航天器两相热控系统热控蓄热器体积的确定

IF 0.3 Q4 ENGINEERING, AEROSPACE
Artem Hodunov, Gennadiy Gorbenko, Rustem Turna, Polina Koval
{"title":"航天器两相热控系统热控蓄热器体积的确定","authors":"Artem Hodunov, Gennadiy Gorbenko, Rustem Turna, Polina Koval","doi":"10.4271/01-17-01-0008","DOIUrl":null,"url":null,"abstract":"<div>For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge. To analyze the loop characteristics in critical modes, experiments were conducted on a test bench with ammonia coolant, and a mathematical simulation of a two-phase mechanically pumped loop was performed. The results show that the loop can operate in critical modes in a certain range of heat loads. The conducted studies allow for the design of a heat-controlled accumulator with the minimum required volume, expand the performance range of a two-phase mechanically pumped loop, and increase the reliability of its operation in orbit during long-term missions.</div>","PeriodicalId":44558,"journal":{"name":"SAE International Journal of Aerospace","volume":"7 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft\",\"authors\":\"Artem Hodunov, Gennadiy Gorbenko, Rustem Turna, Polina Koval\",\"doi\":\"10.4271/01-17-01-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge. To analyze the loop characteristics in critical modes, experiments were conducted on a test bench with ammonia coolant, and a mathematical simulation of a two-phase mechanically pumped loop was performed. The results show that the loop can operate in critical modes in a certain range of heat loads. The conducted studies allow for the design of a heat-controlled accumulator with the minimum required volume, expand the performance range of a two-phase mechanically pumped loop, and increase the reliability of its operation in orbit during long-term missions.</div>\",\"PeriodicalId\":44558,\"journal\":{\"name\":\"SAE International Journal of Aerospace\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/01-17-01-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/01-17-01-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

对于高功耗航天器,基于两相机械泵浦回路的热控系统是合理的。热控蓄能器是两相机械泵循环的关键部件,它可以控制循环中的压力,并保持泵入口处冷却剂沸腾温度或空化余量的要求水平。在失去控制压力的能力时,可能存在两种关键的循环操作模式。第一个临界模式发生在蓄热器在高热负荷下充满液体时。第二个临界模式发生在蓄热器处于低热负荷和冷却剂部分损失时,例如,由于微陨石破裂引起的泄漏。这两种模式都是由蓄能器体积不足或工作流体充注量不足引起的。为了分析回路在临界模式下的特性,在含氨冷却剂的实验台上进行了实验,并对两相机械泵送回路进行了数学模拟。结果表明,在一定的热负荷范围内,该回路可以在临界模式下工作。所进行的研究允许设计具有最小所需体积的热控蓄能器,扩展两相机械泵浦回路的性能范围,并提高其在长期任务期间在轨道上运行的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft
For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge. To analyze the loop characteristics in critical modes, experiments were conducted on a test bench with ammonia coolant, and a mathematical simulation of a two-phase mechanically pumped loop was performed. The results show that the loop can operate in critical modes in a certain range of heat loads. The conducted studies allow for the design of a heat-controlled accumulator with the minimum required volume, expand the performance range of a two-phase mechanically pumped loop, and increase the reliability of its operation in orbit during long-term missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAE International Journal of Aerospace
SAE International Journal of Aerospace ENGINEERING, AEROSPACE-
CiteScore
0.70
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信