{"title":"废氧化镁粉部分替代水泥对自密实混凝土的影响","authors":"Songül Can, Ali Sariisik, Tayfun Uygunoğlu","doi":"10.1680/jadcr.22.00126","DOIUrl":null,"url":null,"abstract":"This experimental study investigated the performance of self-compacting concrete (SCC) mixes with magnesia (MgO) waste. In the series produced with a water/binder ratio of 0.40, cement was replaced by magnesia waste at 2%, 4% and 10% by weight in the SCC. Le Chatelier test, slump flow, compressive strength, flexural strength, depth of penetration of water under pressure, ultrasonic pulse velocity and water absorption by capillary testing was conducted to assess sample performance. X-ray diffraction, thermogravimetric analysis, mercury intrusion porosimetry, differential thermal analysis and scanning electron microscopy were used for the microstructural analysis and quantification of phases within each sample. The results indicated that concrete with magnesia waste contains magnesium silicate hydrate (M–S–H) and brucite ((Mg(OH) 2 ) products. Brucite causes strength loss in concrete. Up to 90 days, specimens with magnesia showed increasing compressive and flexural strength. As the amount of magnesia waste increased, the porosity, depth of water penetration under pressure and water absorption by capillary increased. Incorporating more than 10% of magnesia waste in the SCC mixtures resulted in declining strength. The addition of magnesia waste enhanced the expansion of SCC. An optimum dosage (2%) of magnesia waste was the most advantageous to the strength of SCC.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":" 11","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of waste magnesia powder as partial cement replacement on self-compacting concrete\",\"authors\":\"Songül Can, Ali Sariisik, Tayfun Uygunoğlu\",\"doi\":\"10.1680/jadcr.22.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This experimental study investigated the performance of self-compacting concrete (SCC) mixes with magnesia (MgO) waste. In the series produced with a water/binder ratio of 0.40, cement was replaced by magnesia waste at 2%, 4% and 10% by weight in the SCC. Le Chatelier test, slump flow, compressive strength, flexural strength, depth of penetration of water under pressure, ultrasonic pulse velocity and water absorption by capillary testing was conducted to assess sample performance. X-ray diffraction, thermogravimetric analysis, mercury intrusion porosimetry, differential thermal analysis and scanning electron microscopy were used for the microstructural analysis and quantification of phases within each sample. The results indicated that concrete with magnesia waste contains magnesium silicate hydrate (M–S–H) and brucite ((Mg(OH) 2 ) products. Brucite causes strength loss in concrete. Up to 90 days, specimens with magnesia showed increasing compressive and flexural strength. As the amount of magnesia waste increased, the porosity, depth of water penetration under pressure and water absorption by capillary increased. Incorporating more than 10% of magnesia waste in the SCC mixtures resulted in declining strength. The addition of magnesia waste enhanced the expansion of SCC. An optimum dosage (2%) of magnesia waste was the most advantageous to the strength of SCC.\",\"PeriodicalId\":7299,\"journal\":{\"name\":\"Advances in Cement Research\",\"volume\":\" 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cement Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.22.00126\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jadcr.22.00126","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effects of waste magnesia powder as partial cement replacement on self-compacting concrete
This experimental study investigated the performance of self-compacting concrete (SCC) mixes with magnesia (MgO) waste. In the series produced with a water/binder ratio of 0.40, cement was replaced by magnesia waste at 2%, 4% and 10% by weight in the SCC. Le Chatelier test, slump flow, compressive strength, flexural strength, depth of penetration of water under pressure, ultrasonic pulse velocity and water absorption by capillary testing was conducted to assess sample performance. X-ray diffraction, thermogravimetric analysis, mercury intrusion porosimetry, differential thermal analysis and scanning electron microscopy were used for the microstructural analysis and quantification of phases within each sample. The results indicated that concrete with magnesia waste contains magnesium silicate hydrate (M–S–H) and brucite ((Mg(OH) 2 ) products. Brucite causes strength loss in concrete. Up to 90 days, specimens with magnesia showed increasing compressive and flexural strength. As the amount of magnesia waste increased, the porosity, depth of water penetration under pressure and water absorption by capillary increased. Incorporating more than 10% of magnesia waste in the SCC mixtures resulted in declining strength. The addition of magnesia waste enhanced the expansion of SCC. An optimum dosage (2%) of magnesia waste was the most advantageous to the strength of SCC.
期刊介绍:
Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.