非单量子信道的永恒非马尔可夫性

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shrikant Utagi, Subhashish Banerjee, R. Srikanth
{"title":"非单量子信道的永恒非马尔可夫性","authors":"Shrikant Utagi, Subhashish Banerjee, R. Srikanth","doi":"10.1142/s0219749923500399","DOIUrl":null,"url":null,"abstract":"The eternally non-Markovian (ENM) Pauli channel is an example of a unital channel characterized by a negative decay rate for all time [Formula: see text]. Here, we consider the problem of constructing an analogous non-unital channel, and show in particular that a [Formula: see text]-dimensional generalized amplitude damping (GAD) channel cannot be ENM when the non-Markovianity originates solely from the non-unital part of the channel. We study specific ramifications of this result for qubit GAD. Specifically, we construct a quasi-ENM qubit GAD channel, characterized by a time [Formula: see text], such that the channel is non-Markovian (NM) only and for all time [Formula: see text]. We further point out that our negative result for the qudit GAD channel, namely, the impossibility of the eternal NM property, does not hold for a general qubit or higher-dimensional non-unital channel.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Eternal Non-Markovianity of Non-Unital Quantum Channels\",\"authors\":\"Shrikant Utagi, Subhashish Banerjee, R. Srikanth\",\"doi\":\"10.1142/s0219749923500399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eternally non-Markovian (ENM) Pauli channel is an example of a unital channel characterized by a negative decay rate for all time [Formula: see text]. Here, we consider the problem of constructing an analogous non-unital channel, and show in particular that a [Formula: see text]-dimensional generalized amplitude damping (GAD) channel cannot be ENM when the non-Markovianity originates solely from the non-unital part of the channel. We study specific ramifications of this result for qubit GAD. Specifically, we construct a quasi-ENM qubit GAD channel, characterized by a time [Formula: see text], such that the channel is non-Markovian (NM) only and for all time [Formula: see text]. We further point out that our negative result for the qudit GAD channel, namely, the impossibility of the eternal NM property, does not hold for a general qubit or higher-dimensional non-unital channel.\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749923500399\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219749923500399","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

永久非马尔可夫泡利信道是一个以负衰减率为特征的单一信道的例子[公式:见文本]。在这里,我们考虑构造一个类似的非单位信道的问题,并特别表明,当非马尔可夫性仅来自信道的非单位部分时,一个[公式:见文本]维广义振幅阻尼(GAD)信道不能是ENM。我们研究了这一结果对量子比特GAD的具体影响。具体来说,我们构建了一个准enm量子比特GAD通道,其特征为一个时间[公式:见文本],使得该通道仅为非马尔可夫(NM)并且一直存在[公式:见文本]。我们进一步指出,我们对于qudit GAD信道的否定结果,即永恒NM性质的不可能性,并不适用于一般量子位或高维非一元信道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Eternal Non-Markovianity of Non-Unital Quantum Channels
The eternally non-Markovian (ENM) Pauli channel is an example of a unital channel characterized by a negative decay rate for all time [Formula: see text]. Here, we consider the problem of constructing an analogous non-unital channel, and show in particular that a [Formula: see text]-dimensional generalized amplitude damping (GAD) channel cannot be ENM when the non-Markovianity originates solely from the non-unital part of the channel. We study specific ramifications of this result for qubit GAD. Specifically, we construct a quasi-ENM qubit GAD channel, characterized by a time [Formula: see text], such that the channel is non-Markovian (NM) only and for all time [Formula: see text]. We further point out that our negative result for the qudit GAD channel, namely, the impossibility of the eternal NM property, does not hold for a general qubit or higher-dimensional non-unital channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信