硅基硬质涂层纳米压痕失效过程中的应力分布变化

Ritambhara Dash, Kushal Bhattacharyya, Arnab S. Bhattacharyya
{"title":"硅基硬质涂层纳米压痕失效过程中的应力分布变化","authors":"Ritambhara Dash, Kushal Bhattacharyya, Arnab S. Bhattacharyya","doi":"10.1063/10.0022175","DOIUrl":null,"url":null,"abstract":"Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti, B, Si, C, and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants, it is essential to study the failure mechanisms associated with nanoindentation, such as fracture, delamination, and chipping. The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy, depending on indenter shape, substrate type, crystallographic properties, pre-existing flaws, internal micro-cracks, and pre-strain. Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process, showing that the fracture morphology is affected by the interaction of different cracking events. The interfacial fracture energy, toughness, and residual stress are calculated using existing models with minor adjustments, and it is found that increasing the indenter sharpness improves the shear stress distribution, making the coating more prone to separation. Depending on the prevailing type of stress, the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening. Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction, and because of its stronger induced plasticity than that of a Berkovich indenter tip, a sharper cube-corner tip produces more resistance.","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":" 36","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress distribution variations during nanoindentation failure of hard coatings on silicon substrates\",\"authors\":\"Ritambhara Dash, Kushal Bhattacharyya, Arnab S. Bhattacharyya\",\"doi\":\"10.1063/10.0022175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti, B, Si, C, and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants, it is essential to study the failure mechanisms associated with nanoindentation, such as fracture, delamination, and chipping. The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy, depending on indenter shape, substrate type, crystallographic properties, pre-existing flaws, internal micro-cracks, and pre-strain. Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process, showing that the fracture morphology is affected by the interaction of different cracking events. The interfacial fracture energy, toughness, and residual stress are calculated using existing models with minor adjustments, and it is found that increasing the indenter sharpness improves the shear stress distribution, making the coating more prone to separation. Depending on the prevailing type of stress, the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening. Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction, and because of its stronger induced plasticity than that of a Berkovich indenter tip, a sharper cube-corner tip produces more resistance.\",\"PeriodicalId\":87330,\"journal\":{\"name\":\"Nanotechnology and Precision Engineering\",\"volume\":\" 36\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0022175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0022175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于用于小型高精度器件和生物植入物的基于Ti、B、Si、C和N的纳米复合硬涂层和生物陶瓷(如羟基磷灰石)的质量检测来说,研究与纳米压痕相关的失效机制(如断裂、分层和切屑)至关重要。压头施加的应力会影响断裂形态和界面断裂能,这取决于压头形状、衬底类型、晶体学特性、预先存在的缺陷、内部微裂纹和预应变。本文报道的基于有限元的断裂研究提供了与上述破坏过程相关的不同断裂机制的见解,表明断裂形态受到不同断裂事件的相互作用的影响。利用已有模型进行了微小调整,计算了界面断裂能、韧性和残余应力,发现增加压头锐度可以改善剪切应力分布,使涂层更容易分离。根据主要应力类型的不同,凹陷下的应力分布导致裂纹形成或位错堆积导致应变硬化。压痕过程中产生的不同形式的电阻会影响尖端样品的传导,并且由于其比Berkovich压痕尖端更强的诱导塑性,更锋利的立方角尖端会产生更多的电阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress distribution variations during nanoindentation failure of hard coatings on silicon substrates
Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti, B, Si, C, and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants, it is essential to study the failure mechanisms associated with nanoindentation, such as fracture, delamination, and chipping. The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy, depending on indenter shape, substrate type, crystallographic properties, pre-existing flaws, internal micro-cracks, and pre-strain. Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process, showing that the fracture morphology is affected by the interaction of different cracking events. The interfacial fracture energy, toughness, and residual stress are calculated using existing models with minor adjustments, and it is found that increasing the indenter sharpness improves the shear stress distribution, making the coating more prone to separation. Depending on the prevailing type of stress, the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening. Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction, and because of its stronger induced plasticity than that of a Berkovich indenter tip, a sharper cube-corner tip produces more resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信