N=1超场修饰下N=4超级yang - mills有效作用的有限性

Igor Kondrashuk, Ivan Schmidt
{"title":"N=1超场修饰下N=4超级yang - mills有效作用的有限性","authors":"Igor Kondrashuk, Ivan Schmidt","doi":"10.3390/particles6040063","DOIUrl":null,"url":null,"abstract":"We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of the effective action expressed in terms of dressed N=1 superfields for the case of N=4 super-Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields, we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is scale independent because no scale remains inside these kernels after removing the regularizations. We use two types of regularization: regularization by dimensional reduction and regularization by higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that dressed fields of matter and of vector multiplets can be introduced to express the effective action in terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed technique, we show how the problem of inconsistency of the dimensional reduction can be solved. Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears off shell in both the regularizations.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":" 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Finiteness of N=4 Super-Yang–Mills Effective Action in Terms of Dressed N=1 Superfields\",\"authors\":\"Igor Kondrashuk, Ivan Schmidt\",\"doi\":\"10.3390/particles6040063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of the effective action expressed in terms of dressed N=1 superfields for the case of N=4 super-Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields, we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is scale independent because no scale remains inside these kernels after removing the regularizations. We use two types of regularization: regularization by dimensional reduction and regularization by higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that dressed fields of matter and of vector multiplets can be introduced to express the effective action in terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed technique, we show how the problem of inconsistency of the dimensional reduction can be solved. Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears off shell in both the regularizations.\",\"PeriodicalId\":75932,\"journal\":{\"name\":\"Inhaled particles\",\"volume\":\" 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhaled particles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/particles6040063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhaled particles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/particles6040063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对于N=4的超杨-米尔斯理论,我们支持用修饰的N=1超场表示的有效作用的核在任何尺度(紫外或红外)上的独立性。在修饰平均超场有效作用的“尺度无关性”下,我们指的是其“在去除所有正则化的脱壳极限上的有限性”。这个脱壳限制是尺度无关的,因为在去除正则化之后,这些内核中没有尺度保留。我们使用两种类型的正则化:通过降维正则化和通过超对称形式的高导数正则化。基于Slavnov-Taylor恒等式,我们证明了可以引入物质场和向量多重态的修饰场来表示它们的有效作用。用这种修饰的有效场表示的有效作用的核不依赖于紫外尺度。在降维的情况下,通过使用所开发的技术,我们展示了如何解决降维不一致的问题。利用Piguet和Sibold的形式,我们指出在这两种正则化中,对红外尺度的依赖在壳上消失了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finiteness of N=4 Super-Yang–Mills Effective Action in Terms of Dressed N=1 Superfields
We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of the effective action expressed in terms of dressed N=1 superfields for the case of N=4 super-Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields, we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is scale independent because no scale remains inside these kernels after removing the regularizations. We use two types of regularization: regularization by dimensional reduction and regularization by higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that dressed fields of matter and of vector multiplets can be introduced to express the effective action in terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed technique, we show how the problem of inconsistency of the dimensional reduction can be solved. Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears off shell in both the regularizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信