符号群变异与对偶上通性

Pub Date : 2023-11-08 DOI:10.4171/ggd/749
Xuan Kien Phung
{"title":"符号群变异与对偶上通性","authors":"Xuan Kien Phung","doi":"10.4171/ggd/749","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group. Let $X$ be an algebraic group over an algebraically closed field $K$. Denote by $A=X(K)$ the set of rational points of $X$. We study algebraic group cellular automata $\\tau \\colon A^G \\to A^G$ whose local defining map is induced by a homomorphism of algebraic groups $X^M \\to X$ where $M$ is a finite memory. When $G$ is sofic and $K$ is uncountable, we show that if $\\tau$ is post-surjective then it is weakly pre-injective. Our result extends the dual version of Gottschalk's Conjecture for finite alphabets proposed by Capobianco, Kari, and Taati. When $G$ is amenable, we prove that if $\\tau$ is surjective then it is weakly pre-injective, and conversely, if $\\tau$ is pre-injective then it is surjective. Hence, we obtain a complete answer to a question of Gromov on the Garden of Eden theorem in the case of algebraic group cellular automata.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symbolic group varieties and dual surjunctivity\",\"authors\":\"Xuan Kien Phung\",\"doi\":\"10.4171/ggd/749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group. Let $X$ be an algebraic group over an algebraically closed field $K$. Denote by $A=X(K)$ the set of rational points of $X$. We study algebraic group cellular automata $\\\\tau \\\\colon A^G \\\\to A^G$ whose local defining map is induced by a homomorphism of algebraic groups $X^M \\\\to X$ where $M$ is a finite memory. When $G$ is sofic and $K$ is uncountable, we show that if $\\\\tau$ is post-surjective then it is weakly pre-injective. Our result extends the dual version of Gottschalk's Conjecture for finite alphabets proposed by Capobianco, Kari, and Taati. When $G$ is amenable, we prove that if $\\\\tau$ is surjective then it is weakly pre-injective, and conversely, if $\\\\tau$ is pre-injective then it is surjective. Hence, we obtain a complete answer to a question of Gromov on the Garden of Eden theorem in the case of algebraic group cellular automata.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

让$G$成为一个组。设X$是代数闭域K$上的一个代数群。用A=X(K)表示X的有理点的集合。研究了代数群元胞自动机$\ τ \冒号A^G \到A^G$,其局部定义映射由代数群$X^M \到X$的同态导出,其中$M$是有限内存。当$G$是可数的,$K$是不可数的,我们证明了如果$\ τ $是后满射,那么它是弱前满射。我们的结果扩展了由Capobianco, Kari和Taati提出的有限字母的Gottschalk猜想的对偶版本。当$G$是可服从的,我们证明了如果$\ τ $是满射则它是弱前射,反之,如果$\ τ $是前射则它是满射。因此,在代数群元胞自动机的情况下,我们得到了关于伊甸园定理的Gromov问题的完全答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Symbolic group varieties and dual surjunctivity
Let $G$ be a group. Let $X$ be an algebraic group over an algebraically closed field $K$. Denote by $A=X(K)$ the set of rational points of $X$. We study algebraic group cellular automata $\tau \colon A^G \to A^G$ whose local defining map is induced by a homomorphism of algebraic groups $X^M \to X$ where $M$ is a finite memory. When $G$ is sofic and $K$ is uncountable, we show that if $\tau$ is post-surjective then it is weakly pre-injective. Our result extends the dual version of Gottschalk's Conjecture for finite alphabets proposed by Capobianco, Kari, and Taati. When $G$ is amenable, we prove that if $\tau$ is surjective then it is weakly pre-injective, and conversely, if $\tau$ is pre-injective then it is surjective. Hence, we obtain a complete answer to a question of Gromov on the Garden of Eden theorem in the case of algebraic group cellular automata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信