与自身渐近的点相关的邻近性和传递性

IF 0.8 4区 数学 Q2 MATHEMATICS
KAROL GRYSZKA
{"title":"与自身渐近的点相关的邻近性和传递性","authors":"KAROL GRYSZKA","doi":"10.55730/1300-0098.3476","DOIUrl":null,"url":null,"abstract":"We discuss dynamical systems that exhibit at least one weakly asymptotically periodic point. In the general case we prove that the system becomes trivial (it is either a periodic point or a fixed point) provided it is equicontinuous and transitive. This result can be used to provide a simple characterization of periodic points in transitive systems. We also discuss systems whose orbits are both proximal and weakly asymptotically periodic. As a result, we obtain a more general tool to detect mutual dynamics between two close orbits which need not be bounded (or have the empty limit set).","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" 27","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximality and transitivity in relation to points that are asymptotic to themselves\",\"authors\":\"KAROL GRYSZKA\",\"doi\":\"10.55730/1300-0098.3476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss dynamical systems that exhibit at least one weakly asymptotically periodic point. In the general case we prove that the system becomes trivial (it is either a periodic point or a fixed point) provided it is equicontinuous and transitive. This result can be used to provide a simple characterization of periodic points in transitive systems. We also discuss systems whose orbits are both proximal and weakly asymptotically periodic. As a result, we obtain a more general tool to detect mutual dynamics between two close orbits which need not be bounded (or have the empty limit set).\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" 27\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3476\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3476","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了具有至少一个弱渐近周期点的动力系统。在一般情况下,我们证明了如果系统是等连续和可传递的,则系统是平凡的(它是周期点或不动点)。这个结果可以用来提供传递系统中周期点的一个简单表征。我们还讨论了轨道是近周期和弱渐近周期的系统。因此,我们获得了一种更通用的工具来检测两个不需要有界(或有空极限集)的紧密轨道之间的相互动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proximality and transitivity in relation to points that are asymptotic to themselves
We discuss dynamical systems that exhibit at least one weakly asymptotically periodic point. In the general case we prove that the system becomes trivial (it is either a periodic point or a fixed point) provided it is equicontinuous and transitive. This result can be used to provide a simple characterization of periodic points in transitive systems. We also discuss systems whose orbits are both proximal and weakly asymptotically periodic. As a result, we obtain a more general tool to detect mutual dynamics between two close orbits which need not be bounded (or have the empty limit set).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信