可逆随机图上的哈纳克不等式和UST的一端性

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Nathanaël Berestycki, Diederik van Engelenburg
{"title":"可逆随机图上的哈纳克不等式和UST的一端性","authors":"Nathanaël Berestycki, Diederik van Engelenburg","doi":"10.1007/s00440-023-01239-z","DOIUrl":null,"url":null,"abstract":"Abstract We prove that for recurrent, reversible graphs, the following conditions are equivalent: (a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-endedness of the wired uniform spanning tree. In particular this gives a proof of the anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also complements and strengthens some results of Benjamini et al. (Ann Probab 29(1):1–65, 2001). Furthermore, we make progress towards a conjecture of Aldous and Lyons by proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodular graphs. Finally, we discuss the behaviour of the random walk conditioned to never return to the origin, which is well defined as a consequence of our results.","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":" 2","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harnack inequality and one-endedness of UST on reversible random graphs\",\"authors\":\"Nathanaël Berestycki, Diederik van Engelenburg\",\"doi\":\"10.1007/s00440-023-01239-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that for recurrent, reversible graphs, the following conditions are equivalent: (a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-endedness of the wired uniform spanning tree. In particular this gives a proof of the anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also complements and strengthens some results of Benjamini et al. (Ann Probab 29(1):1–65, 2001). Furthermore, we make progress towards a conjecture of Aldous and Lyons by proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodular graphs. Finally, we discuss the behaviour of the random walk conditioned to never return to the origin, which is well defined as a consequence of our results.\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01239-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00440-023-01239-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要证明了对于循环可逆图,下列条件是等价的:(a)势核的存在唯一性,(b)从无穷远处调和测度的存在唯一性,(c)一个新的锚定的Harnack不等式,(d)有线一致生成树的单端性。特别地,这给出了在upt上锚定的(实际上也是椭圆的)哈纳克不等式的证明。这也补充和加强了Benjamini等人(Ann Probab 29(1):1 - 65,2001)的一些结果。进一步证明了严格次扩散递归非模图满足这些条件,从而进一步证明了Aldous和Lyons的一个猜想。最后,我们讨论了随机漫步的行为,这种行为被限制为永远不会返回原点,这是我们的结果的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnack inequality and one-endedness of UST on reversible random graphs

Harnack inequality and one-endedness of UST on reversible random graphs
Abstract We prove that for recurrent, reversible graphs, the following conditions are equivalent: (a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-endedness of the wired uniform spanning tree. In particular this gives a proof of the anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also complements and strengthens some results of Benjamini et al. (Ann Probab 29(1):1–65, 2001). Furthermore, we make progress towards a conjecture of Aldous and Lyons by proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodular graphs. Finally, we discuss the behaviour of the random walk conditioned to never return to the origin, which is well defined as a consequence of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信