{"title":"三次曲面上点类的非关联牟方环的一个例子","authors":"Dimitri Kanevsky","doi":"10.1007/s10801-023-01274-y","DOIUrl":null,"url":null,"abstract":"Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\\theta T_3^3=0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> over a quadratic extension of 3-adic numbers $$k=\\mathbb {Q}_3(\\theta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\theta ^3=1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>θ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that a relation on a set of geometric k-points on V modulo $$(1-\\theta )^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":" 12","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An example of a non-associative Moufang loop of point classes on a cubic surface\",\"authors\":\"Dimitri Kanevsky\",\"doi\":\"10.1007/s10801-023-01274-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\\\\theta T_3^3=0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> over a quadratic extension of 3-adic numbers $$k=\\\\mathbb {Q}_3(\\\\theta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\\\theta ^3=1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>θ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that a relation on a set of geometric k-points on V modulo $$(1-\\\\theta )^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.\",\"PeriodicalId\":14926,\"journal\":{\"name\":\"Journal of Algebraic Combinatorics\",\"volume\":\" 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01274-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01274-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An example of a non-associative Moufang loop of point classes on a cubic surface
Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\theta T_3^3=0$$ T03+T13+T23+θT33=0 over a quadratic extension of 3-adic numbers $$k=\mathbb {Q}_3(\theta )$$ k=Q3(θ) , where $$\theta ^3=1$$ θ3=1 . We show that a relation on a set of geometric k-points on V modulo $$(1-\theta )^3$$ (1-θ)3 (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.