三次曲面上点类的非关联牟方环的一个例子

Pub Date : 2023-11-08 DOI:10.1007/s10801-023-01274-y
Dimitri Kanevsky
{"title":"三次曲面上点类的非关联牟方环的一个例子","authors":"Dimitri Kanevsky","doi":"10.1007/s10801-023-01274-y","DOIUrl":null,"url":null,"abstract":"Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\\theta T_3^3=0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> over a quadratic extension of 3-adic numbers $$k=\\mathbb {Q}_3(\\theta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\theta ^3=1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>θ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that a relation on a set of geometric k-points on V modulo $$(1-\\theta )^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An example of a non-associative Moufang loop of point classes on a cubic surface\",\"authors\":\"Dimitri Kanevsky\",\"doi\":\"10.1007/s10801-023-01274-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\\\\theta T_3^3=0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> over a quadratic extension of 3-adic numbers $$k=\\\\mathbb {Q}_3(\\\\theta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\\\theta ^3=1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>θ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that a relation on a set of geometric k-points on V modulo $$(1-\\\\theta )^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01274-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01274-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设V是一个三进数的二次扩展$$k=\mathbb {Q}_3(\theta )$$ k = q3 (θ)上由方程$$T_0^3+T_1^3+T_2^3+\theta T_3^3=0$$ t03 + t03 + t03 + θ t33 = 0定义的三次曲面,其中$$\theta ^3=1$$ θ 3 = 1。我们证明了在V模$$(1-\theta )^3$$ (1 - θ) 3 (k整数环)上的几何k点集合上的一个关系定义了一个可容许的关系,并且与这个可容许等价的类相关联的交换牟方环是非结合的。这就回答了余提出的一个问题。1、50多年前提出了具有点类的非关联牟方环的三次曲面的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An example of a non-associative Moufang loop of point classes on a cubic surface
Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\theta T_3^3=0$$ T 0 3 + T 1 3 + T 2 3 + θ T 3 3 = 0 over a quadratic extension of 3-adic numbers $$k=\mathbb {Q}_3(\theta )$$ k = Q 3 ( θ ) , where $$\theta ^3=1$$ θ 3 = 1 . We show that a relation on a set of geometric k-points on V modulo $$(1-\theta )^3$$ ( 1 - θ ) 3 (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信