{"title":"自由有序产品-有序半群汞合金-有序领地","authors":"MICHAEL TSINGELIS","doi":"10.55730/1300-0098.3468","DOIUrl":null,"url":null,"abstract":": Given an indexed family { ( S i , · i , ≤ i ) , i ∈ I } of disjoint ordered semigroups, we construct an ordered semigroup having ( S i , · i , ≤ i ) , i ∈ I as subsemigroups (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). This ordered semigroup is the free ordered product Π i ∈ I ∗ S i of the family { S i , i ∈ I } and we give the crucial property which essentially characterizes the free products. Next we study the same problem in the case that the family { ( S i , · i , ≤ i ) , i ∈ I } of ordered semigroups has as intersection the ordered semigroup ( U, · U , ≤ U ) which is a subsemigroup of ( S i , · i , ≤ i ) for every i ∈ I (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). To do this, we first consider the ordered semigroup amalgam A = [ { ( S i , · i , ≤ i ) , i ∈ I } ; ( U, · U , ≤ U ) ; { φ i : U → S i , i ∈ I } ] (where { φ i : U → S i , i ∈ I } is a family of monomorphisms) and then we construct the free ordered product Π ∗ U i ∈ I S i of the ordered semigroup amalgam A considering the ordered quotient of the free ordered product Π i ∈ I ∗ S i by an appropriate pseudoorder of Π i ∈ I ∗ S i through which for each i, j ∈ I and for each u ∈ U , φ i ( u ) ∈ S i is identified (by means of monomorphisms) with φ j ( u ) ∈ S j . We give a sufficient and necessary condition so that an ordered semigroup amalgam is embedded in an ordered semigroup. At the end of the paper, we introduce the notion of ordered dominions. An element d of an ordered semigroup S is dominated by a subsemigroup U of S if for all ordered semigroups ( T, · , ≤ ) and for all homomorphisms β, γ : S → T such that β ( u ) = γ ( u ) for each u ∈ U , we have [ β ( d )) T ≤ ∩ [ γ ( d )) T ≤ ̸ = ∅ . In the last Theorem of the paper, we give an expression of the set of elements of S dominated by U based on ordered semigroup amalgams.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free ordered products-ordered semigroup amalgams-ordered dominions\",\"authors\":\"MICHAEL TSINGELIS\",\"doi\":\"10.55730/1300-0098.3468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Given an indexed family { ( S i , · i , ≤ i ) , i ∈ I } of disjoint ordered semigroups, we construct an ordered semigroup having ( S i , · i , ≤ i ) , i ∈ I as subsemigroups (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). This ordered semigroup is the free ordered product Π i ∈ I ∗ S i of the family { S i , i ∈ I } and we give the crucial property which essentially characterizes the free products. Next we study the same problem in the case that the family { ( S i , · i , ≤ i ) , i ∈ I } of ordered semigroups has as intersection the ordered semigroup ( U, · U , ≤ U ) which is a subsemigroup of ( S i , · i , ≤ i ) for every i ∈ I (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). To do this, we first consider the ordered semigroup amalgam A = [ { ( S i , · i , ≤ i ) , i ∈ I } ; ( U, · U , ≤ U ) ; { φ i : U → S i , i ∈ I } ] (where { φ i : U → S i , i ∈ I } is a family of monomorphisms) and then we construct the free ordered product Π ∗ U i ∈ I S i of the ordered semigroup amalgam A considering the ordered quotient of the free ordered product Π i ∈ I ∗ S i by an appropriate pseudoorder of Π i ∈ I ∗ S i through which for each i, j ∈ I and for each u ∈ U , φ i ( u ) ∈ S i is identified (by means of monomorphisms) with φ j ( u ) ∈ S j . We give a sufficient and necessary condition so that an ordered semigroup amalgam is embedded in an ordered semigroup. At the end of the paper, we introduce the notion of ordered dominions. An element d of an ordered semigroup S is dominated by a subsemigroup U of S if for all ordered semigroups ( T, · , ≤ ) and for all homomorphisms β, γ : S → T such that β ( u ) = γ ( u ) for each u ∈ U , we have [ β ( d )) T ≤ ∩ [ γ ( d )) T ≤ ̸ = ∅ . In the last Theorem of the paper, we give an expression of the set of elements of S dominated by U based on ordered semigroup amalgams.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3468\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3468","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
: Given an indexed family { ( S i , · i , ≤ i ) , i ∈ I } of disjoint ordered semigroups, we construct an ordered semigroup having ( S i , · i , ≤ i ) , i ∈ I as subsemigroups (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). This ordered semigroup is the free ordered product Π i ∈ I ∗ S i of the family { S i , i ∈ I } and we give the crucial property which essentially characterizes the free products. Next we study the same problem in the case that the family { ( S i , · i , ≤ i ) , i ∈ I } of ordered semigroups has as intersection the ordered semigroup ( U, · U , ≤ U ) which is a subsemigroup of ( S i , · i , ≤ i ) for every i ∈ I (with respect to the operation and order relation of each ( S i , · i , ≤ i ) , i ∈ I ). To do this, we first consider the ordered semigroup amalgam A = [ { ( S i , · i , ≤ i ) , i ∈ I } ; ( U, · U , ≤ U ) ; { φ i : U → S i , i ∈ I } ] (where { φ i : U → S i , i ∈ I } is a family of monomorphisms) and then we construct the free ordered product Π ∗ U i ∈ I S i of the ordered semigroup amalgam A considering the ordered quotient of the free ordered product Π i ∈ I ∗ S i by an appropriate pseudoorder of Π i ∈ I ∗ S i through which for each i, j ∈ I and for each u ∈ U , φ i ( u ) ∈ S i is identified (by means of monomorphisms) with φ j ( u ) ∈ S j . We give a sufficient and necessary condition so that an ordered semigroup amalgam is embedded in an ordered semigroup. At the end of the paper, we introduce the notion of ordered dominions. An element d of an ordered semigroup S is dominated by a subsemigroup U of S if for all ordered semigroups ( T, · , ≤ ) and for all homomorphisms β, γ : S → T such that β ( u ) = γ ( u ) for each u ∈ U , we have [ β ( d )) T ≤ ∩ [ γ ( d )) T ≤ ̸ = ∅ . In the last Theorem of the paper, we give an expression of the set of elements of S dominated by U based on ordered semigroup amalgams.
期刊介绍:
The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research
Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics.
Contribution is open to researchers of all nationalities.