具有猎物避难所和Allee效应的捕食者-食饵模型的动态复杂性

IF 0.8 4区 数学 Q2 MATHEMATICS
JIANPING GAO, JIANGHONG ZHANG, WENYAN LIAN
{"title":"具有猎物避难所和Allee效应的捕食者-食饵模型的动态复杂性","authors":"JIANPING GAO, JIANGHONG ZHANG, WENYAN LIAN","doi":"10.55730/1300-0098.3481","DOIUrl":null,"url":null,"abstract":"We consider a predator-prey model with a non-monotonic functional response encompassing a prey refuge and a strong Allee effect on the prey. The multiple existence and stability of interior equilibria are investigated. The bifurcation analysis shows this model can exhibit numerous kinds of bifurcations (e.g., saddle-node, Hopf-Andronov and Bogdanov-Takens bifurcations). It is found that there exist diverse parameter values for which the model exhibits a limit cycle, a homoclinic orbit, and even many heteroclinic curves. The results obtained reveal the prey refuge in the model brings rich dynamics and makes the system more sensitive to parameter values. The main purpose of the present work is to offer a complete mathematical analysis of the effect that the refuge brings about.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical complexity of a predator-prey model with a prey refuge and Allee effect\",\"authors\":\"JIANPING GAO, JIANGHONG ZHANG, WENYAN LIAN\",\"doi\":\"10.55730/1300-0098.3481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a predator-prey model with a non-monotonic functional response encompassing a prey refuge and a strong Allee effect on the prey. The multiple existence and stability of interior equilibria are investigated. The bifurcation analysis shows this model can exhibit numerous kinds of bifurcations (e.g., saddle-node, Hopf-Andronov and Bogdanov-Takens bifurcations). It is found that there exist diverse parameter values for which the model exhibits a limit cycle, a homoclinic orbit, and even many heteroclinic curves. The results obtained reveal the prey refuge in the model brings rich dynamics and makes the system more sensitive to parameter values. The main purpose of the present work is to offer a complete mathematical analysis of the effect that the refuge brings about.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3481\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3481","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个具有非单调功能响应的捕食者-猎物模型,该模型包括一个猎物避难所和对猎物的强Allee效应。研究了内部平衡态的多重存在性和稳定性。分岔分析表明,该模型可以表现出多种分岔(如鞍节点分岔、Hopf-Andronov分岔和Bogdanov-Takens分岔)。结果表明,该模型存在多种参数值,在这些参数值下,模型表现出一个极限环,一个同斜轨道,甚至许多异斜曲线。结果表明,模型中的猎物庇护所带来了丰富的动态特性,使系统对参数值更加敏感。本工作的主要目的是提供一个完整的数学分析,避难所带来的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical complexity of a predator-prey model with a prey refuge and Allee effect
We consider a predator-prey model with a non-monotonic functional response encompassing a prey refuge and a strong Allee effect on the prey. The multiple existence and stability of interior equilibria are investigated. The bifurcation analysis shows this model can exhibit numerous kinds of bifurcations (e.g., saddle-node, Hopf-Andronov and Bogdanov-Takens bifurcations). It is found that there exist diverse parameter values for which the model exhibits a limit cycle, a homoclinic orbit, and even many heteroclinic curves. The results obtained reveal the prey refuge in the model brings rich dynamics and makes the system more sensitive to parameter values. The main purpose of the present work is to offer a complete mathematical analysis of the effect that the refuge brings about.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信