{"title":"双曲线何时与它的渐近线相交?莱布尼茨的有限无限、虚构与矛盾","authors":"Mikhail Katz, David Sherry, Monica Ugaglia","doi":"10.36446/rlf2023359","DOIUrl":null,"url":null,"abstract":"In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the perspective point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz's analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodriguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz's search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.","PeriodicalId":498519,"journal":{"name":"Revista latinoamericana de filosofía","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When Does a Hyperbola Meet Its Asymptote? Bounded Infinities, Fictions, and Contradictions in Leibniz\",\"authors\":\"Mikhail Katz, David Sherry, Monica Ugaglia\",\"doi\":\"10.36446/rlf2023359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the perspective point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz's analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodriguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz's search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.\",\"PeriodicalId\":498519,\"journal\":{\"name\":\"Revista latinoamericana de filosofía\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista latinoamericana de filosofía\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36446/rlf2023359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista latinoamericana de filosofía","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36446/rlf2023359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When Does a Hyperbola Meet Its Asymptote? Bounded Infinities, Fictions, and Contradictions in Leibniz
In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the perspective point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz's analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodriguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz's search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.