植物辅助合成磁性NiFe2O4纳米复合材料,利用白芍甲醇提取物从水溶液中有效去除抗生素:平衡、动力学、等温线和热力学的研究

IF 2.1 4区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Elham Derakhshani, Ali Naghizadeh, Sobhan Mortazavi-Derazkola
{"title":"植物辅助合成磁性NiFe2O4纳米复合材料,利用白芍甲醇提取物从水溶液中有效去除抗生素:平衡、动力学、等温线和热力学的研究","authors":"Elham Derakhshani, Ali Naghizadeh, Sobhan Mortazavi-Derazkola","doi":"10.2166/aqua.2023.117","DOIUrl":null,"url":null,"abstract":"Abstract In this research, the magnetic NiFe2O4 nanocomposite was synthesized using Pulicaria gnaphalodes methanolic extract and applied to remove penicillin G from aqueous solutions. The results of field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, VSM, and energy-dispersive spectroscopy-mapping analyses showed that this nanocomposite was well synthesized with a size of approximately 50–70 nm. The maximum adsorption capacity of the magnetic NiFe2O4 nanocomposite was 22.95 mg/g under optimal conditions. In addition, the experimental data of penicillin G adsorption by the magnetic NiFe2O4 nanocomposite showed that ΔH and ΔS values were positive and ΔG was negative and were following the Temkin isotherm model with R2 = 0.99 and follows the pseudo-second-order kinetic model.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":" 22","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phyto-assisted synthesis of magnetic NiFe2O4 nanocomposite using the <i>Pulicaria gnaphalodes</i> methanolic extract for the efficient removal of an antibiotic from the aqueous solution: a study of equilibrium, kinetics, isotherms, and thermodynamics\",\"authors\":\"Elham Derakhshani, Ali Naghizadeh, Sobhan Mortazavi-Derazkola\",\"doi\":\"10.2166/aqua.2023.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this research, the magnetic NiFe2O4 nanocomposite was synthesized using Pulicaria gnaphalodes methanolic extract and applied to remove penicillin G from aqueous solutions. The results of field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, VSM, and energy-dispersive spectroscopy-mapping analyses showed that this nanocomposite was well synthesized with a size of approximately 50–70 nm. The maximum adsorption capacity of the magnetic NiFe2O4 nanocomposite was 22.95 mg/g under optimal conditions. In addition, the experimental data of penicillin G adsorption by the magnetic NiFe2O4 nanocomposite showed that ΔH and ΔS values were positive and ΔG was negative and were following the Temkin isotherm model with R2 = 0.99 and follows the pseudo-second-order kinetic model.\",\"PeriodicalId\":34693,\"journal\":{\"name\":\"AQUA-Water Infrastructure Ecosystems and Society\",\"volume\":\" 22\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA-Water Infrastructure Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2023.117\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.117","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究以白芍甲醇提取物为原料制备了磁性纳米NiFe2O4复合材料,并将其用于去除青霉素G。场发射扫描电镜、x射线粉末衍射、傅里叶变换红外、VSM和能量色散谱图分析结果表明,该纳米复合材料的合成效果良好,尺寸约为50-70 nm。在最佳条件下,磁性NiFe2O4纳米复合材料的最大吸附容量为22.95 mg/g。此外,磁性NiFe2O4纳米复合材料吸附青霉素G的实验数据表明,ΔH和ΔS为正,ΔG为负,符合R2 = 0.99的Temkin等温线模型,符合拟二级动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phyto-assisted synthesis of magnetic NiFe2O4 nanocomposite using the Pulicaria gnaphalodes methanolic extract for the efficient removal of an antibiotic from the aqueous solution: a study of equilibrium, kinetics, isotherms, and thermodynamics
Abstract In this research, the magnetic NiFe2O4 nanocomposite was synthesized using Pulicaria gnaphalodes methanolic extract and applied to remove penicillin G from aqueous solutions. The results of field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, VSM, and energy-dispersive spectroscopy-mapping analyses showed that this nanocomposite was well synthesized with a size of approximately 50–70 nm. The maximum adsorption capacity of the magnetic NiFe2O4 nanocomposite was 22.95 mg/g under optimal conditions. In addition, the experimental data of penicillin G adsorption by the magnetic NiFe2O4 nanocomposite showed that ΔH and ΔS values were positive and ΔG was negative and were following the Temkin isotherm model with R2 = 0.99 and follows the pseudo-second-order kinetic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信