{"title":"四维朗格万模型与Hauser-Feshbach理论的结合来描述裂变碎片的统计衰变","authors":"Kazuki Fujio, Shin Okumura, Chikako Ishizuka, Satoshi Chiba, Tatsuya Katabuchi","doi":"10.1080/00223131.2023.2273470","DOIUrl":null,"url":null,"abstract":"We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":" 8","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connection of four-dimensional Langevin model and Hauser-Feshbach theory to describe statistical decay of fission fragments\",\"authors\":\"Kazuki Fujio, Shin Okumura, Chikako Ishizuka, Satoshi Chiba, Tatsuya Katabuchi\",\"doi\":\"10.1080/00223131.2023.2273470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\" 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2273470\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2273470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Connection of four-dimensional Langevin model and Hauser-Feshbach theory to describe statistical decay of fission fragments
We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.