{"title":"四维朗格万模型与Hauser-Feshbach理论的结合来描述裂变碎片的统计衰变","authors":"Kazuki Fujio, Shin Okumura, Chikako Ishizuka, Satoshi Chiba, Tatsuya Katabuchi","doi":"10.1080/00223131.2023.2273470","DOIUrl":null,"url":null,"abstract":"We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connection of four-dimensional Langevin model and Hauser-Feshbach theory to describe statistical decay of fission fragments\",\"authors\":\"Kazuki Fujio, Shin Okumura, Chikako Ishizuka, Satoshi Chiba, Tatsuya Katabuchi\",\"doi\":\"10.1080/00223131.2023.2273470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2273470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2273470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Connection of four-dimensional Langevin model and Hauser-Feshbach theory to describe statistical decay of fission fragments
We have developed a novel theoretical method to obtain independent fission product yields and prompt neutron observables by connecting mass and total kinetic energy (TKE) distributions calculated by a four-dimensional Langevin dynamical model to a Hauser-Feshbach statistical decay model. In the Langevin calculations, mass distributions corresponding to the standard I and II modes were obtained separately and superposed to reproduce the fission fragment yield of spontaneous fission of 238,240,242Pu and thermal neutron-induced fission of 239Pu. This was achieved by using different neck parameters for these two modes in the two-center shell model shape parametrization, and a systematics of the superposing ratio was obtained as a function of (N−Z)/A of the fissioning nuclei. The Hauser-Feshbach calculations were performed using a nuclear reaction code TALYS for 239Pu(n,f) reaction in the incident energy range from thermal up to 5MeV, and the calculated prompt fission observables were compared with experimental and evaluated data. Although further improvements are needed for the most important nuclides, it turned out that the present methodology has the capability to prepare fission-related nuclear data for nuclides for which measurements are difficult.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.