2022年9月5日中国泸定6.8级地震的PWV和陆-气观测同震特征分析

IF 4.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao
{"title":"2022年9月5日中国泸定6.8级地震的PWV和陆-气观测同震特征分析","authors":"Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao","doi":"10.1080/19475705.2023.2279494","DOIUrl":null,"url":null,"abstract":"The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022\",\"authors\":\"Ao Guo, Nan Jiang, Yan Xu, Tianhe Xu, Yuhao Wu, Song Li, Zhaorui Gao\",\"doi\":\"10.1080/19475705.2023.2279494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2279494\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2279494","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2022年9月5日发生的四川泸定地震是中国近年来最强烈的地震之一。利用地面卫星导航系统(GNSS)反演的可降水量(PWV)、再分析数据集的地表压力(SP)、地表潜热通量(SLHF)和地表温度(LST)对震中及附近地区进行了分析。结果表明:距震中最近的SCSM站和SCTQ站的PWV明显减小,并在突出处达到波谷,最小值分别为43.21 mm和37.84 mm;SLHF也有相同的趋势,SP升高。此外,对两个时间序列的LST分析表明,泸定事件伴随着一个低温异常。根据近10年同期建立的背景场,震中发生当天的地表温度比往年低5.68℃。9月4 ~ 6日低温异常最强,异常指数分别为- 1.95、- 1.71和- 1.60。陆、大气参数在泸定地震中表现出最小的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022
The Sichuan Luding earthquake that struck on September 5, 2022 is one of the strongest earthquakes in China in recent years. The analysis of precipitable water vapor (PWV) retrieved from the ground-based global navigation satellite system (GNSS), surface pressure (SP), surface latent heat flux (SLHF), and land surface temperature (LST) from the reanalysis dataset was carried out in the epicenter and the nearby areas. The results show that PWV decreases distinctly and reaches the trough at the outburst with significant minimums of 43.21 mm and 37.84 mm over the nearest SCSM and SCTQ station from the epicenter. SLHF also has the same trend, and SP increased. Additionally, the LST analysis from two-temporal series was conducted to reveal that the Luding event accompanies by a low-temperature anomaly. Based on the background field established from the same period of the last ten years, LST at the epicenter on the day of occurrence was 5.68 °C lower than in previous years. Furthermore, the strongest low-temperature anomalies were observed from September 4 to 6, with the anomaly index of −1.95, −1.71, and −1.60, respectively. It is plain that the parameters from the land and atmosphere perform the anomalies at the minimum during the Luding earthquake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics Natural Hazards & Risk
Geomatics Natural Hazards & Risk GEOSCIENCES, MULTIDISCIPLINARY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
7.70
自引率
4.80%
发文量
117
审稿时长
>12 weeks
期刊介绍: The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards. Geomatics, Natural Hazards and Risk covers the following topics: - Remote sensing techniques - Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change - Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards. - Results of findings on major natural hazards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信