Mir Sajjad Hashemi, Mohammad Mirzazadeh, Dumitru Baleanu
{"title":"具有广义分数阶导数的非齐次波动方程近似解的创新计算方法","authors":"Mir Sajjad Hashemi, Mohammad Mirzazadeh, Dumitru Baleanu","doi":"10.37256/cm.4420233593","DOIUrl":null,"url":null,"abstract":"In this work, a well-known non-homogeneous wave equation with temporal fractional derivative is approximately investigated. A recently defined generalized non-local fractional derivative is utilized as the fractional operator. A novel technique is proposed to approximate the solutions of wave equation with generalized fractional derivative. The proposed method is based on the shifted Chebyshev polynomials and a combination of collocation and residual function methods. Theoretical analysis of the convergence of the proposed method is performed. Approximate solutions are derived in both rectangular and non-rectangular (general) domains.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":" 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Method for Computing Approximate Solutions of Non-Homogeneous Wave Equations with Generalized Fractional Derivatives\",\"authors\":\"Mir Sajjad Hashemi, Mohammad Mirzazadeh, Dumitru Baleanu\",\"doi\":\"10.37256/cm.4420233593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a well-known non-homogeneous wave equation with temporal fractional derivative is approximately investigated. A recently defined generalized non-local fractional derivative is utilized as the fractional operator. A novel technique is proposed to approximate the solutions of wave equation with generalized fractional derivative. The proposed method is based on the shifted Chebyshev polynomials and a combination of collocation and residual function methods. Theoretical analysis of the convergence of the proposed method is performed. Approximate solutions are derived in both rectangular and non-rectangular (general) domains.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\" 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420233593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420233593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Innovative Method for Computing Approximate Solutions of Non-Homogeneous Wave Equations with Generalized Fractional Derivatives
In this work, a well-known non-homogeneous wave equation with temporal fractional derivative is approximately investigated. A recently defined generalized non-local fractional derivative is utilized as the fractional operator. A novel technique is proposed to approximate the solutions of wave equation with generalized fractional derivative. The proposed method is based on the shifted Chebyshev polynomials and a combination of collocation and residual function methods. Theoretical analysis of the convergence of the proposed method is performed. Approximate solutions are derived in both rectangular and non-rectangular (general) domains.