一致性RFRS塔

IF 0.8 4区 数学 Q2 MATHEMATICS
Ian Agol, Matthew Stover
{"title":"一致性RFRS塔","authors":"Ian Agol, Matthew Stover","doi":"10.5802/aif.3532","DOIUrl":null,"url":null,"abstract":"We describe a criterion for a real or complex hyperbolic lattice to admit a residually finite rational solvable (RFRS) tower that consists entirely of congruence subgroups. We use this to show that certain Bianchi groups PSL 2 (𝒪 d ) are virtually fibered on congruence subgroups, and also exhibit the first examples of RFRS Kähler groups that are not a subgroup of a product of surface groups and abelian groups.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":"37 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Congruence RFRS towers\",\"authors\":\"Ian Agol, Matthew Stover\",\"doi\":\"10.5802/aif.3532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a criterion for a real or complex hyperbolic lattice to admit a residually finite rational solvable (RFRS) tower that consists entirely of congruence subgroups. We use this to show that certain Bianchi groups PSL 2 (𝒪 d ) are virtually fibered on congruence subgroups, and also exhibit the first examples of RFRS Kähler groups that are not a subgroup of a product of surface groups and abelian groups.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3532\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/aif.3532","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了一个实双曲格或复双曲格允许一个完全由同余子群组成的剩余有限有理可解(RFRS)塔的准则。我们利用这一点证明了某些Bianchi群PSL 2 ( d)实际上是由同余子群构成的,并首次证明了RFRS Kähler群不是曲面群与阿贝尔群乘积的子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruence RFRS towers
We describe a criterion for a real or complex hyperbolic lattice to admit a residually finite rational solvable (RFRS) tower that consists entirely of congruence subgroups. We use this to show that certain Bianchi groups PSL 2 (𝒪 d ) are virtually fibered on congruence subgroups, and also exhibit the first examples of RFRS Kähler groups that are not a subgroup of a product of surface groups and abelian groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信