量子尺度下的经典碰撞动力学

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-11-09 DOI:10.3390/atoms11110144
Sebastian Otranto
{"title":"量子尺度下的经典碰撞动力学","authors":"Sebastian Otranto","doi":"10.3390/atoms11110144","DOIUrl":null,"url":null,"abstract":"During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" 11","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collisional Classical Dynamics at the Quantum Scale\",\"authors\":\"Sebastian Otranto\",\"doi\":\"10.3390/atoms11110144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11110144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11110144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的五十年里,经典动力学已经被系统地用于了解带电粒子和光子与原子和分子目标之间的碰撞过程。这些方法已被证明是有效的系统中,数值密集量子力学方法尚不易于处理。多年来,电荷交换和电离的反应截面已经在总和微分水平上进行了仔细研究,从而清楚地了解了经典描述中固有的优点和局限性。在这项工作中,我们提出了经典轨迹蒙特卡罗方法的回顾,其现状和前景,可以设想为不久的将来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collisional Classical Dynamics at the Quantum Scale
During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信