次线性无关数图中的团因子

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jie Han, Ping Hu, Guanghui Wang, Donglei Yang
{"title":"次线性无关数图中的团因子","authors":"Jie Han, Ping Hu, Guanghui Wang, Donglei Yang","doi":"10.1017/s0963548323000081","DOIUrl":null,"url":null,"abstract":"Abstract Given a graph $G$ and an integer $\\ell \\ge 2$ , we denote by $\\alpha _{\\ell }(G)$ the maximum size of a $K_{\\ell }$ -free subset of vertices in $V(G)$ . A recent question of Nenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in $n$ -vertex graphs $G$ with $\\alpha _{\\ell }(G) = o(n)$ , which can be seen as a Ramsey–Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp minimum degree threshold for $K_r$ -factors in $n$ -vertex graphs $G$ with $\\alpha _\\ell (G)=n^{1-o(1)}$ for all $r\\ge \\ell \\ge 2$ .","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clique-factors in graphs with sublinear -independence number\",\"authors\":\"Jie Han, Ping Hu, Guanghui Wang, Donglei Yang\",\"doi\":\"10.1017/s0963548323000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a graph $G$ and an integer $\\\\ell \\\\ge 2$ , we denote by $\\\\alpha _{\\\\ell }(G)$ the maximum size of a $K_{\\\\ell }$ -free subset of vertices in $V(G)$ . A recent question of Nenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in $n$ -vertex graphs $G$ with $\\\\alpha _{\\\\ell }(G) = o(n)$ , which can be seen as a Ramsey–Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp minimum degree threshold for $K_r$ -factors in $n$ -vertex graphs $G$ with $\\\\alpha _\\\\ell (G)=n^{1-o(1)}$ for all $r\\\\ge \\\\ell \\\\ge 2$ .\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

给定一个图$G$和一个整数$\ell \ge 2$,我们用$\alpha _{\ell }(G)$表示$V(G)$中一个无$K_{\ell }$的顶点子集的最大大小。Nenadov和Pehova最近的一个问题是用$\alpha _{\ell }(G) = o(n)$确定$n$ -顶点图$G$中强迫派系因子的最佳最小可能度条件,这可以看作是著名的hajnal - szemersamedi定理的Ramsey-Turán变体。在本文中,我们找到了$n$ -顶点图$G$中$K_r$ -因子的渐近尖锐最小度阈值,对于所有$r\ge \ell \ge 2$都有$\alpha _\ell (G)=n^{1-o(1)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clique-factors in graphs with sublinear -independence number
Abstract Given a graph $G$ and an integer $\ell \ge 2$ , we denote by $\alpha _{\ell }(G)$ the maximum size of a $K_{\ell }$ -free subset of vertices in $V(G)$ . A recent question of Nenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in $n$ -vertex graphs $G$ with $\alpha _{\ell }(G) = o(n)$ , which can be seen as a Ramsey–Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp minimum degree threshold for $K_r$ -factors in $n$ -vertex graphs $G$ with $\alpha _\ell (G)=n^{1-o(1)}$ for all $r\ge \ell \ge 2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信