门式起重机四杆机构:简要概述

Milis Nilgun CAIBULA, Constantin MILITARU, Sorin CĂNĂNĂU
{"title":"门式起重机四杆机构:简要概述","authors":"Milis Nilgun CAIBULA, Constantin MILITARU, Sorin CĂNĂNĂU","doi":"10.53464/jmte.02.2023.03","DOIUrl":null,"url":null,"abstract":"The present article aims to increase knowledge of a four-bar mechanism. A four-bar system is a planar mechanism. There are many types of simple mechanisms, such as: Chebyshev, Chebyshev lamda, Hoecken, Roberts, Watt’s, Grasshopper, horse-head, pantograph and Peaucelier. More complex mechanisms are: Stewart platform or Jansen’s linkage. The determination of the degrees of freedom (DOF) for a system is done using the Chebychev-Gruebler-Kutzbach relationship. Due to this fact, the DOF for the four-bar system has the value one. Moreover, we analyze the following angles: θ, α, β and φ3in the mechanism. Finally, using Matlab software the drawing and the dynamic simulation of a four-bar mechanism is carried out. Besides, the dynamic simulation is represented after 3s, 6s and 12s.","PeriodicalId":476016,"journal":{"name":"Journal of marine technology and environment","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOUR-BAR MECHANISM FOR A PORTAL CRANE: A BRIEF OVERVIEW\",\"authors\":\"Milis Nilgun CAIBULA, Constantin MILITARU, Sorin CĂNĂNĂU\",\"doi\":\"10.53464/jmte.02.2023.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present article aims to increase knowledge of a four-bar mechanism. A four-bar system is a planar mechanism. There are many types of simple mechanisms, such as: Chebyshev, Chebyshev lamda, Hoecken, Roberts, Watt’s, Grasshopper, horse-head, pantograph and Peaucelier. More complex mechanisms are: Stewart platform or Jansen’s linkage. The determination of the degrees of freedom (DOF) for a system is done using the Chebychev-Gruebler-Kutzbach relationship. Due to this fact, the DOF for the four-bar system has the value one. Moreover, we analyze the following angles: θ, α, β and φ3in the mechanism. Finally, using Matlab software the drawing and the dynamic simulation of a four-bar mechanism is carried out. Besides, the dynamic simulation is represented after 3s, 6s and 12s.\",\"PeriodicalId\":476016,\"journal\":{\"name\":\"Journal of marine technology and environment\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of marine technology and environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53464/jmte.02.2023.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of marine technology and environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53464/jmte.02.2023.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在增加四杆机构的知识。四杆机构是一种平面机构。有许多类型的简单机构,如:切比雪夫,切比雪夫lamda, Hoecken, Roberts,瓦特,Grasshopper,马头,受电弓和Peaucelier。更复杂的机构有:Stewart平台或Jansen连杆。系统的自由度(DOF)的确定是使用Chebychev-Gruebler-Kutzbach关系来完成的。由于这个事实,四杆系统的自由度值为1。此外,我们还分析了机构中的θ、α、β和φ3角。最后,利用Matlab软件对四杆机构进行了绘图和动力学仿真。并在3秒、6秒和12秒后进行了动态仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FOUR-BAR MECHANISM FOR A PORTAL CRANE: A BRIEF OVERVIEW
The present article aims to increase knowledge of a four-bar mechanism. A four-bar system is a planar mechanism. There are many types of simple mechanisms, such as: Chebyshev, Chebyshev lamda, Hoecken, Roberts, Watt’s, Grasshopper, horse-head, pantograph and Peaucelier. More complex mechanisms are: Stewart platform or Jansen’s linkage. The determination of the degrees of freedom (DOF) for a system is done using the Chebychev-Gruebler-Kutzbach relationship. Due to this fact, the DOF for the four-bar system has the value one. Moreover, we analyze the following angles: θ, α, β and φ3in the mechanism. Finally, using Matlab software the drawing and the dynamic simulation of a four-bar mechanism is carried out. Besides, the dynamic simulation is represented after 3s, 6s and 12s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信