非线性偏微分方程的半解析同伦分析方法

IF 0.6 Q3 MATHEMATICS
Kiran Dhirawat, Ramakanta Meher
{"title":"非线性偏微分方程的半解析同伦分析方法","authors":"Kiran Dhirawat, Ramakanta Meher","doi":"10.37256/cm.4420232467","DOIUrl":null,"url":null,"abstract":"This work considers a novel semi-analytical method named the homotopy analysis method (HAM) to study the nonlinear gas dynamic equation. The obtained HAM solution is validated by comparing it with the exact available solution and compared with the (Adomian decomposition method) ADM solution and numerical solution to test the efficiency of the proposed method. The efficiency of the proposed approach can be demonstrated numerically and graphically, and it is found to be in excellent agreement with the current approach.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"5 2","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-analytical Approach to Nonlinear Partial Differential Equations Using Homotopy Analysis Technique (HAM)\",\"authors\":\"Kiran Dhirawat, Ramakanta Meher\",\"doi\":\"10.37256/cm.4420232467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers a novel semi-analytical method named the homotopy analysis method (HAM) to study the nonlinear gas dynamic equation. The obtained HAM solution is validated by comparing it with the exact available solution and compared with the (Adomian decomposition method) ADM solution and numerical solution to test the efficiency of the proposed method. The efficiency of the proposed approach can be demonstrated numerically and graphically, and it is found to be in excellent agreement with the current approach.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"5 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的半解析方法——同伦分析法(HAM)来研究非线性气体动力学方程。将所得的HAM解与精确有效解进行比较,并与(Adomian分解法)ADM解和数值解进行比较,验证了所提方法的有效性。该方法的有效性可以用数值和图形来证明,并且发现它与现有方法非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-analytical Approach to Nonlinear Partial Differential Equations Using Homotopy Analysis Technique (HAM)
This work considers a novel semi-analytical method named the homotopy analysis method (HAM) to study the nonlinear gas dynamic equation. The obtained HAM solution is validated by comparing it with the exact available solution and compared with the (Adomian decomposition method) ADM solution and numerical solution to test the efficiency of the proposed method. The efficiency of the proposed approach can be demonstrated numerically and graphically, and it is found to be in excellent agreement with the current approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信