{"title":"富勒烯的 Diels-Alder 环加成反应:机理理论的进展","authors":"Hong-Yan Jiao, Chun-Xiang Li, Jun-Ru He, Jia-Li Peng, Pei-Ke Jia, Bin-Bin Xie, Cheng-Xing Cui","doi":"10.1002/poc.4579","DOIUrl":null,"url":null,"abstract":"<p>Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (<b>DA</b>) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the <b>DA</b> cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C<sub>60</sub> and C<sub>70</sub>), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diels–Alder cycloadditions of fullerene: Advances in mechanistic theory\",\"authors\":\"Hong-Yan Jiao, Chun-Xiang Li, Jun-Ru He, Jia-Li Peng, Pei-Ke Jia, Bin-Bin Xie, Cheng-Xing Cui\",\"doi\":\"10.1002/poc.4579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (<b>DA</b>) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the <b>DA</b> cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C<sub>60</sub> and C<sub>70</sub>), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.4579\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4579","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
摘要
富勒烯因其独特的 π 电子构型而表现出大量有趣的特性。通过有机反应在碳-碳键上引入化学基团,可以操纵富勒烯的结构和特性,从而扩展其应用领域。Diels-Alder (DA) 环加成反应通常用于装饰富勒烯的碳笼。此外,原子、离子、团簇和分子可以插入富勒烯的中空碳笼,从而改变富勒烯碳笼内的电子传递过程,进而改变 DA 环加成反应的反应活性和区域选择性。基于计算机的理论建模是研究化学的重要工具。在此,我们简要回顾了对两种最常见富勒烯(C60 和 C70)环加成反应机理的理论研究,尤其是基于畸变-相互作用模型的包裹化学物种的影响。我们希望当前的微型综述能为从事富勒烯及其基于 DA 的改性的硅学研究或对其感兴趣的研究人员提供有用而有趣的资源。
Diels–Alder cycloadditions of fullerene: Advances in mechanistic theory
Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (DA) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the DA cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C60 and C70), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.