Feistel-Toffoli结构的单一性

IF 0.6 4区 数学 Q3 MATHEMATICS
Hans-E. Porst
{"title":"Feistel-Toffoli结构的单一性","authors":"Hans-E. Porst","doi":"10.2989/16073606.2023.2247730","DOIUrl":null,"url":null,"abstract":"AbstractThe Feistel-Toffoli construction of a bijective Boolean function out of an arbitrary one, a fundamental tool in reversible computing and in cryptography, has recently been analyzed (see [12]) to be a special instance of the construction of a monoid homomorphism from the X -fold cartesian power of a monoid M into the endomorphism monoid of the free M -set over the set X . It is the purpose of this note to show that this construction itself is in fact a genuine monoidal one. The generalization of the Feistel-Toffoli construction to internal categories in arbitrary finitely complete categories of [12] then becomes a special instance of this monoidal description.Mathematics Subject Classification (2020): 18M0518D4068Q09Key words: Convolution monoids and Hopf monoids in monoidal categoriesinternal categoryKleisli categoryspansFeistel schemeToffoli gate","PeriodicalId":49652,"journal":{"name":"Quaestiones Mathematicae","volume":"49 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The monoidal nature of the Feistel-Toffoli construction\",\"authors\":\"Hans-E. Porst\",\"doi\":\"10.2989/16073606.2023.2247730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe Feistel-Toffoli construction of a bijective Boolean function out of an arbitrary one, a fundamental tool in reversible computing and in cryptography, has recently been analyzed (see [12]) to be a special instance of the construction of a monoid homomorphism from the X -fold cartesian power of a monoid M into the endomorphism monoid of the free M -set over the set X . It is the purpose of this note to show that this construction itself is in fact a genuine monoidal one. The generalization of the Feistel-Toffoli construction to internal categories in arbitrary finitely complete categories of [12] then becomes a special instance of this monoidal description.Mathematics Subject Classification (2020): 18M0518D4068Q09Key words: Convolution monoids and Hopf monoids in monoidal categoriesinternal categoryKleisli categoryspansFeistel schemeToffoli gate\",\"PeriodicalId\":49652,\"journal\":{\"name\":\"Quaestiones Mathematicae\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaestiones Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2989/16073606.2023.2247730\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaestiones Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2989/16073606.2023.2247730","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要任意双射布尔函数的Feistel-Toffoli构造是可逆计算和密码学中的一个基本工具,最近被分析(见[12]),它是由单似群M的X倍笛卡儿幂构造为集合X上自由M集的自同态单似群的一个特殊实例。这篇笔记的目的是表明这个结构本身实际上是一个真正的单轴结构。将Feistel-Toffoli构造推广到任意有限完备范畴[12]中的内范畴,就成为这种一元描述的一个特殊实例。数学学科分类(2020):18m0518d4068q09关键字:一元类中的卷积一元和Hopf一元;内范畴;kleisli范畴
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The monoidal nature of the Feistel-Toffoli construction
AbstractThe Feistel-Toffoli construction of a bijective Boolean function out of an arbitrary one, a fundamental tool in reversible computing and in cryptography, has recently been analyzed (see [12]) to be a special instance of the construction of a monoid homomorphism from the X -fold cartesian power of a monoid M into the endomorphism monoid of the free M -set over the set X . It is the purpose of this note to show that this construction itself is in fact a genuine monoidal one. The generalization of the Feistel-Toffoli construction to internal categories in arbitrary finitely complete categories of [12] then becomes a special instance of this monoidal description.Mathematics Subject Classification (2020): 18M0518D4068Q09Key words: Convolution monoids and Hopf monoids in monoidal categoriesinternal categoryKleisli categoryspansFeistel schemeToffoli gate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quaestiones Mathematicae
Quaestiones Mathematicae 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
121
审稿时长
>12 weeks
期刊介绍: Quaestiones Mathematicae is devoted to research articles from a wide range of mathematical areas. Longer expository papers of exceptional quality are also considered. Published in English, the journal receives contributions from authors around the globe and serves as an important reference source for anyone interested in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信