Jiří Adámek, Miroslav Hušek, Jiří Rosický, Walter Tholen
{"title":"拓扑的小","authors":"Jiří Adámek, Miroslav Hušek, Jiří Rosický, Walter Tholen","doi":"10.2989/16073606.2023.2247720","DOIUrl":null,"url":null,"abstract":"AbstractQuillen’s notion of small object and the Gabriel-Ulmer notion of finitely presentable or generated object are fundamental in homotopy theory and categorical algebra. Do these notions always lead to rather uninteresting classes of objects in categories of topological spaces, such as all finite discrete spaces, or just the empty space, as the examples and remarks in the existing literature may suggest?This article demonstrates that the establishment of full characterizations of these notions (and some natural variations thereof) in many familiar categories of spaces can be quite challenging and may lead to unexpected surprises. In fact, we show that there are significant differences in this regard even amongst the categories defined by the standard separation axioms, with the T1-separation condition standing out. The findings about these specific categories lead us to insights also when considering rather arbitrary full reflective subcategories of the category of all topological spaces.Mathematics Subject Classification (2020): 18F6054B3054D10Key words: Finitely presentable objectfinitely generated objectfinitely small objectdirected colimitHausdorff spaceT0-spaceT1-spacecompact space","PeriodicalId":49652,"journal":{"name":"Quaestiones Mathematicae","volume":"50 6","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smallness in topology\",\"authors\":\"Jiří Adámek, Miroslav Hušek, Jiří Rosický, Walter Tholen\",\"doi\":\"10.2989/16073606.2023.2247720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractQuillen’s notion of small object and the Gabriel-Ulmer notion of finitely presentable or generated object are fundamental in homotopy theory and categorical algebra. Do these notions always lead to rather uninteresting classes of objects in categories of topological spaces, such as all finite discrete spaces, or just the empty space, as the examples and remarks in the existing literature may suggest?This article demonstrates that the establishment of full characterizations of these notions (and some natural variations thereof) in many familiar categories of spaces can be quite challenging and may lead to unexpected surprises. In fact, we show that there are significant differences in this regard even amongst the categories defined by the standard separation axioms, with the T1-separation condition standing out. The findings about these specific categories lead us to insights also when considering rather arbitrary full reflective subcategories of the category of all topological spaces.Mathematics Subject Classification (2020): 18F6054B3054D10Key words: Finitely presentable objectfinitely generated objectfinitely small objectdirected colimitHausdorff spaceT0-spaceT1-spacecompact space\",\"PeriodicalId\":49652,\"journal\":{\"name\":\"Quaestiones Mathematicae\",\"volume\":\"50 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaestiones Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2989/16073606.2023.2247720\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaestiones Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2989/16073606.2023.2247720","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
AbstractQuillen’s notion of small object and the Gabriel-Ulmer notion of finitely presentable or generated object are fundamental in homotopy theory and categorical algebra. Do these notions always lead to rather uninteresting classes of objects in categories of topological spaces, such as all finite discrete spaces, or just the empty space, as the examples and remarks in the existing literature may suggest?This article demonstrates that the establishment of full characterizations of these notions (and some natural variations thereof) in many familiar categories of spaces can be quite challenging and may lead to unexpected surprises. In fact, we show that there are significant differences in this regard even amongst the categories defined by the standard separation axioms, with the T1-separation condition standing out. The findings about these specific categories lead us to insights also when considering rather arbitrary full reflective subcategories of the category of all topological spaces.Mathematics Subject Classification (2020): 18F6054B3054D10Key words: Finitely presentable objectfinitely generated objectfinitely small objectdirected colimitHausdorff spaceT0-spaceT1-spacecompact space
期刊介绍:
Quaestiones Mathematicae is devoted to research articles from a wide range of mathematical areas. Longer expository papers of exceptional quality are also considered. Published in English, the journal receives contributions from authors around the globe and serves as an important reference source for anyone interested in mathematics.