{"title":"评价多序列比对程序在沙特人群SARS-CoV-2基因分型中的应用","authors":"Aminah Alqahtani, Meznah Almutairy","doi":"10.3390/computation11110212","DOIUrl":null,"url":null,"abstract":"This study explores the accuracy and efficiency of multiple sequence alignment (MSA) programs, focusing on ClustalΩ, MAFFT, and MUSCLE in the context of genotyping SARS-CoV-2 for the Saudi population. Our results indicate that MAFFT outperforms the others, making it an ideal choice for large-scale genomic analyses. The comparative performance of MSAs assembled using MergeAlign demonstrates that MAFFT and MUSCLE consistently exhibit higher accuracy than ClustalΩ in both reference-based and consensus-based approaches. The evaluation of genotyping effectiveness reveals that the addition of a reference sequence, such as the SARS-CoV-2 Wuhan-Hu-1 isolate, does not significantly affect the alignment process, suggesting that using consensus sequences derived from individual MSA alignments may yield comparable genotyping outcomes. Investigating single-nucleotide polymorphisms (SNPs) and mutations highlights distinctive features of MSA programs. ClustalΩ and MAFFT show similar counts, while MUSCLE displays the highest SNP count. High-frequency SNP analysis identifies MAFFT as the most accurate MSA program, emphasizing its reliability. Comparisons between Saudi and global SARS-CoV-2 populations underscore regional genetic variations. Saudis exhibit consistently higher frequencies of high-frequency SNPs, attributed to genetic similarity within the population. Transmission dynamics analysis reveals a higher frequency of co-mutations in the Saudi dataset, suggesting shared evolutionary patterns. These findings emphasize the importance of considering regional diversity in genetic analyses.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"34 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Performance of Multiple Sequence Alignment Programs with Application to Genotyping SARS-CoV-2 in the Saudi Population\",\"authors\":\"Aminah Alqahtani, Meznah Almutairy\",\"doi\":\"10.3390/computation11110212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the accuracy and efficiency of multiple sequence alignment (MSA) programs, focusing on ClustalΩ, MAFFT, and MUSCLE in the context of genotyping SARS-CoV-2 for the Saudi population. Our results indicate that MAFFT outperforms the others, making it an ideal choice for large-scale genomic analyses. The comparative performance of MSAs assembled using MergeAlign demonstrates that MAFFT and MUSCLE consistently exhibit higher accuracy than ClustalΩ in both reference-based and consensus-based approaches. The evaluation of genotyping effectiveness reveals that the addition of a reference sequence, such as the SARS-CoV-2 Wuhan-Hu-1 isolate, does not significantly affect the alignment process, suggesting that using consensus sequences derived from individual MSA alignments may yield comparable genotyping outcomes. Investigating single-nucleotide polymorphisms (SNPs) and mutations highlights distinctive features of MSA programs. ClustalΩ and MAFFT show similar counts, while MUSCLE displays the highest SNP count. High-frequency SNP analysis identifies MAFFT as the most accurate MSA program, emphasizing its reliability. Comparisons between Saudi and global SARS-CoV-2 populations underscore regional genetic variations. Saudis exhibit consistently higher frequencies of high-frequency SNPs, attributed to genetic similarity within the population. Transmission dynamics analysis reveals a higher frequency of co-mutations in the Saudi dataset, suggesting shared evolutionary patterns. These findings emphasize the importance of considering regional diversity in genetic analyses.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了多序列比对(MSA)程序的准确性和效率,重点关注ClustalΩ、MAFFT和MUSCLE在沙特人群SARS-CoV-2基因分型的背景下。我们的结果表明,MAFFT优于其他方法,使其成为大规模基因组分析的理想选择。使用MergeAlign组装的msa的比较性能表明,在基于参考和基于共识的方法中,MAFFT和MUSCLE始终表现出比ClustalΩ更高的准确性。基因分型有效性评估显示,添加参考序列(如SARS-CoV-2武汉- hu -1分离物)不会显著影响比对过程,这表明使用来自单个MSA比对的共识序列可能产生可比较的基因分型结果。研究单核苷酸多态性(SNPs)和突变突出了MSA程序的独特特征。ClustalΩ和MAFFT显示相似的计数,而MUSCLE显示最高的SNP计数。高频SNP分析确定MAFFT是最准确的MSA程序,强调其可靠性。沙特和全球SARS-CoV-2人群的比较强调了区域遗传差异。沙特人表现出一贯较高的高频snp频率,归因于种群内的遗传相似性。传播动力学分析显示,沙特数据集中的共突变频率更高,表明共享的进化模式。这些发现强调了在遗传分析中考虑区域多样性的重要性。
Evaluating the Performance of Multiple Sequence Alignment Programs with Application to Genotyping SARS-CoV-2 in the Saudi Population
This study explores the accuracy and efficiency of multiple sequence alignment (MSA) programs, focusing on ClustalΩ, MAFFT, and MUSCLE in the context of genotyping SARS-CoV-2 for the Saudi population. Our results indicate that MAFFT outperforms the others, making it an ideal choice for large-scale genomic analyses. The comparative performance of MSAs assembled using MergeAlign demonstrates that MAFFT and MUSCLE consistently exhibit higher accuracy than ClustalΩ in both reference-based and consensus-based approaches. The evaluation of genotyping effectiveness reveals that the addition of a reference sequence, such as the SARS-CoV-2 Wuhan-Hu-1 isolate, does not significantly affect the alignment process, suggesting that using consensus sequences derived from individual MSA alignments may yield comparable genotyping outcomes. Investigating single-nucleotide polymorphisms (SNPs) and mutations highlights distinctive features of MSA programs. ClustalΩ and MAFFT show similar counts, while MUSCLE displays the highest SNP count. High-frequency SNP analysis identifies MAFFT as the most accurate MSA program, emphasizing its reliability. Comparisons between Saudi and global SARS-CoV-2 populations underscore regional genetic variations. Saudis exhibit consistently higher frequencies of high-frequency SNPs, attributed to genetic similarity within the population. Transmission dynamics analysis reveals a higher frequency of co-mutations in the Saudi dataset, suggesting shared evolutionary patterns. These findings emphasize the importance of considering regional diversity in genetic analyses.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.