Zachary Estreito, Vinh Le, Frederick C. Harris Jr., Sergiu M. Dascalu
{"title":"提高脑电情绪识别的信噪比评估","authors":"Zachary Estreito, Vinh Le, Frederick C. Harris Jr., Sergiu M. Dascalu","doi":"10.4018/ijsi.333161","DOIUrl":null,"url":null,"abstract":"Predicting valence and arousal values from EEG signals has been a steadfast research topic within the field of affective computing or emotional AI. Although numerous valid techniques to predict valence and arousal values from EEG signals have been established and verified, the EEG data collection process itself is relatively undocumented. This creates an artificial learning curve for new researchers seeking to incorporate EEGs within their research workflow. In this article, a study is presented that illustrates the importance of a strict EEG data collection process for EEG affective computing studies. The work was evaluated by first validating the effectiveness of a machine learning prediction model on the DREAMER dataset, then showcasing the lack of effectiveness of the same machine learning prediction model on cursorily obtained EEG data.","PeriodicalId":55938,"journal":{"name":"International Journal of Software Innovation","volume":"55 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating an Elevated Signal-to-Noise Ratio in EEG Emotion Recognition\",\"authors\":\"Zachary Estreito, Vinh Le, Frederick C. Harris Jr., Sergiu M. Dascalu\",\"doi\":\"10.4018/ijsi.333161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting valence and arousal values from EEG signals has been a steadfast research topic within the field of affective computing or emotional AI. Although numerous valid techniques to predict valence and arousal values from EEG signals have been established and verified, the EEG data collection process itself is relatively undocumented. This creates an artificial learning curve for new researchers seeking to incorporate EEGs within their research workflow. In this article, a study is presented that illustrates the importance of a strict EEG data collection process for EEG affective computing studies. The work was evaluated by first validating the effectiveness of a machine learning prediction model on the DREAMER dataset, then showcasing the lack of effectiveness of the same machine learning prediction model on cursorily obtained EEG data.\",\"PeriodicalId\":55938,\"journal\":{\"name\":\"International Journal of Software Innovation\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.333161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.333161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Evaluating an Elevated Signal-to-Noise Ratio in EEG Emotion Recognition
Predicting valence and arousal values from EEG signals has been a steadfast research topic within the field of affective computing or emotional AI. Although numerous valid techniques to predict valence and arousal values from EEG signals have been established and verified, the EEG data collection process itself is relatively undocumented. This creates an artificial learning curve for new researchers seeking to incorporate EEGs within their research workflow. In this article, a study is presented that illustrates the importance of a strict EEG data collection process for EEG affective computing studies. The work was evaluated by first validating the effectiveness of a machine learning prediction model on the DREAMER dataset, then showcasing the lack of effectiveness of the same machine learning prediction model on cursorily obtained EEG data.
期刊介绍:
The International Journal of Software Innovation (IJSI) covers state-of-the-art research and development in all aspects of evolutionary and revolutionary ideas pertaining to software systems and their development. The journal publishes original papers on both theory and practice that reflect and accommodate the fast-changing nature of daily life. Topics of interest include not only application-independent software systems, but also application-specific software systems like healthcare, education, energy, and entertainment software systems, as well as techniques and methodologies for modeling, developing, validating, maintaining, and reengineering software systems and their environments.