Matías Jofré Bartholin, Boris Barrera Vega, Liliana Berrocal Silva
{"title":"智利南部环境水源中的耐抗生素细菌:对人类健康的潜在威胁","authors":"Matías Jofré Bartholin, Boris Barrera Vega, Liliana Berrocal Silva","doi":"10.3390/microbiolres14040121","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance (AMR) is a critical global issue affecting public and animal health. The overuse of antibiotics in human health, animal production, agriculture, and aquaculture has led to the selection of antibiotic-resistant strains, particularly in Gram-negative bacteria. Mutations and horizontal gene transfer play a significant role in the development of antimicrobial resistance, leading to the reduced efficacy of current antibiotics. Today, AMR in bacteria and antibiotic-resistance genes (ARGs) are increasingly recognized in multiple environmental sources, including recreational and irrigation waters. This study aims to identify Gram-negative bacteria from surface aquatic reservoirs in southern Chile and assess their susceptibility to clinically relevant antibiotics. Water samples were collected from four lakes, five rivers, one waterfall, and one watershed in southern Chile to isolate environmental Gram-negative bacilli (GNB). API-20E and MALDI–TOF were employed for bacterial identification. Kirby–Bauer disc diffusion tests and multiplex PCR were performed to determine their susceptibility profile. A total of 26 GNB strains were isolated from environmental water samples, predominantly belonging to the Pseudomonas (n = 9) and Acinetobacter (n = 7) genera. Among these strains, 96.2% were resistant to ampicillin and cefazoline, while 26.9% and 34.6% showed resistance to ceftazidime and cefepime, respectively. Additionally, 38.5% exhibited resistance to colistin. Two Enterobacter cloacae strains obtained from Cachapoal River (sixth region) and Villarrica Lake (ninth region), respectively, presented a multidrug-resistant (MDR) phenotype and carried at least two extended-spectrum β-lactamase (ESBL) genes. Thus, antibiotic-resistant GNB and ARGs were found in natural water reservoirs, raising concerns about the dissemination of resistance determinants among potentially pathogenic bacteria in environmental microbial communities.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"35 11","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health\",\"authors\":\"Matías Jofré Bartholin, Boris Barrera Vega, Liliana Berrocal Silva\",\"doi\":\"10.3390/microbiolres14040121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial resistance (AMR) is a critical global issue affecting public and animal health. The overuse of antibiotics in human health, animal production, agriculture, and aquaculture has led to the selection of antibiotic-resistant strains, particularly in Gram-negative bacteria. Mutations and horizontal gene transfer play a significant role in the development of antimicrobial resistance, leading to the reduced efficacy of current antibiotics. Today, AMR in bacteria and antibiotic-resistance genes (ARGs) are increasingly recognized in multiple environmental sources, including recreational and irrigation waters. This study aims to identify Gram-negative bacteria from surface aquatic reservoirs in southern Chile and assess their susceptibility to clinically relevant antibiotics. Water samples were collected from four lakes, five rivers, one waterfall, and one watershed in southern Chile to isolate environmental Gram-negative bacilli (GNB). API-20E and MALDI–TOF were employed for bacterial identification. Kirby–Bauer disc diffusion tests and multiplex PCR were performed to determine their susceptibility profile. A total of 26 GNB strains were isolated from environmental water samples, predominantly belonging to the Pseudomonas (n = 9) and Acinetobacter (n = 7) genera. Among these strains, 96.2% were resistant to ampicillin and cefazoline, while 26.9% and 34.6% showed resistance to ceftazidime and cefepime, respectively. Additionally, 38.5% exhibited resistance to colistin. Two Enterobacter cloacae strains obtained from Cachapoal River (sixth region) and Villarrica Lake (ninth region), respectively, presented a multidrug-resistant (MDR) phenotype and carried at least two extended-spectrum β-lactamase (ESBL) genes. Thus, antibiotic-resistant GNB and ARGs were found in natural water reservoirs, raising concerns about the dissemination of resistance determinants among potentially pathogenic bacteria in environmental microbial communities.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"35 11\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres14040121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14040121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health
Antimicrobial resistance (AMR) is a critical global issue affecting public and animal health. The overuse of antibiotics in human health, animal production, agriculture, and aquaculture has led to the selection of antibiotic-resistant strains, particularly in Gram-negative bacteria. Mutations and horizontal gene transfer play a significant role in the development of antimicrobial resistance, leading to the reduced efficacy of current antibiotics. Today, AMR in bacteria and antibiotic-resistance genes (ARGs) are increasingly recognized in multiple environmental sources, including recreational and irrigation waters. This study aims to identify Gram-negative bacteria from surface aquatic reservoirs in southern Chile and assess their susceptibility to clinically relevant antibiotics. Water samples were collected from four lakes, five rivers, one waterfall, and one watershed in southern Chile to isolate environmental Gram-negative bacilli (GNB). API-20E and MALDI–TOF were employed for bacterial identification. Kirby–Bauer disc diffusion tests and multiplex PCR were performed to determine their susceptibility profile. A total of 26 GNB strains were isolated from environmental water samples, predominantly belonging to the Pseudomonas (n = 9) and Acinetobacter (n = 7) genera. Among these strains, 96.2% were resistant to ampicillin and cefazoline, while 26.9% and 34.6% showed resistance to ceftazidime and cefepime, respectively. Additionally, 38.5% exhibited resistance to colistin. Two Enterobacter cloacae strains obtained from Cachapoal River (sixth region) and Villarrica Lake (ninth region), respectively, presented a multidrug-resistant (MDR) phenotype and carried at least two extended-spectrum β-lactamase (ESBL) genes. Thus, antibiotic-resistant GNB and ARGs were found in natural water reservoirs, raising concerns about the dissemination of resistance determinants among potentially pathogenic bacteria in environmental microbial communities.
期刊介绍:
Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.