贝叶斯优化方法量化输入参数不确定性对数值物理模拟预测的影响

Samuel G. McCallum, James E. Lerpinière, Kjeld O. Jensen, Pascal Friederich, Alison B. Walker
{"title":"贝叶斯优化方法量化输入参数不确定性对数值物理模拟预测的影响","authors":"Samuel G. McCallum, James E. Lerpinière, Kjeld O. Jensen, Pascal Friederich, Alison B. Walker","doi":"10.1063/5.0151747","DOIUrl":null,"url":null,"abstract":"An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters represented by a high-dimensional input space. It is, therefore, generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g., a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian optimization to minimize the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide (MAPbI3), which has attracted attention as a light harvesting material in solar cells. From our analysis, we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.","PeriodicalId":229559,"journal":{"name":"APL Machine Learning","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian optimization approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations\",\"authors\":\"Samuel G. McCallum, James E. Lerpinière, Kjeld O. Jensen, Pascal Friederich, Alison B. Walker\",\"doi\":\"10.1063/5.0151747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters represented by a high-dimensional input space. It is, therefore, generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g., a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian optimization to minimize the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide (MAPbI3), which has attracted attention as a light harvesting material in solar cells. From our analysis, we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.\",\"PeriodicalId\":229559,\"journal\":{\"name\":\"APL Machine Learning\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0151747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0151747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理解物理模型数值模拟中输入参数的不确定性如何导致模拟输出的不确定性是一项具有挑战性的任务。量化输出不确定性的常用方法,如在模型输入空间上执行网格或随机搜索,对于由高维输入空间表示的大量输入参数在计算上是难以处理的。因此,通常不清楚数值模拟是否可以用一组合理的模型输入参数再现特定的结果(例如,一组实验结果)。在这里,我们提出了一种使用贝叶斯优化来有效搜索输入空间的方法,以最小化模拟输出与一组实验结果之间的差异。我们的方法允许显式评估模拟能够在由每个输入参数的不确定性定义的输入空间区域内再现测量实验结果的概率。我们将这种方法应用于模拟钙钛矿半导体甲基铵碘化铅(MAPbI3)中的载流子动力学,MAPbI3作为太阳能电池中的光收集材料受到了广泛的关注。从我们的分析中,我们得出结论,大极化子的形成,过量电子或空穴与离子振动耦合产生的准粒子,不能解释实验观察到的电子迁移率的温度依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations
An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters represented by a high-dimensional input space. It is, therefore, generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g., a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian optimization to minimize the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide (MAPbI3), which has attracted attention as a light harvesting material in solar cells. From our analysis, we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信