余维2的结构不稳定二次向量场:具有一个有限鞍节点和一个分离矩阵连接的族

IF 1.9 3区 数学 Q1 MATHEMATICS
Joan C. Artés
{"title":"余维2的结构不稳定二次向量场:具有一个有限鞍节点和一个分离矩阵连接的族","authors":"Joan C. Artés","doi":"10.1007/s12346-023-00882-0","DOIUrl":null,"url":null,"abstract":"Abstract This paper is part of a series of works whose ultimate goal is the complete classification of phase portraits of quadratic differential systems in the plane modulo limit cycles. It is estimated that the total number may be around 2000, so the work to find them all must be split in different papers in a systematic way so to assure the completeness of the study and also the non intersection among them. In this paper we classify the family of phase portraits possessing one finite saddle-node and a separatrix connection and determine that there are a minimum of 77 topologically different phase portraits plus at most 16 other phase portraits which we conjecture to be impossible. Along this paper we also deploy a mistake in the book (Artés et al. in Structurally unstable quadratic vector fields of codimension one, Birkhäuser/Springer, Cham, 2018) linked to a mistake in Reyn and Huang (Separatrix configuration of quadratic systems with finite multiplicity three and a $$M^0_{1,1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> </mml:math> type of critical point at infinity. Report Technische Universiteit Delft, pp 95–115, 1995).","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"58 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing One Finite Saddle-Node and a Separatrix Connection\",\"authors\":\"Joan C. Artés\",\"doi\":\"10.1007/s12346-023-00882-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is part of a series of works whose ultimate goal is the complete classification of phase portraits of quadratic differential systems in the plane modulo limit cycles. It is estimated that the total number may be around 2000, so the work to find them all must be split in different papers in a systematic way so to assure the completeness of the study and also the non intersection among them. In this paper we classify the family of phase portraits possessing one finite saddle-node and a separatrix connection and determine that there are a minimum of 77 topologically different phase portraits plus at most 16 other phase portraits which we conjecture to be impossible. Along this paper we also deploy a mistake in the book (Artés et al. in Structurally unstable quadratic vector fields of codimension one, Birkhäuser/Springer, Cham, 2018) linked to a mistake in Reyn and Huang (Separatrix configuration of quadratic systems with finite multiplicity three and a $$M^0_{1,1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> </mml:math> type of critical point at infinity. Report Technische Universiteit Delft, pp 95–115, 1995).\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"58 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-023-00882-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12346-023-00882-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文是一系列以平面模极限环上二次微分系统相图的完全分类为最终目标的研究工作的一部分。据估计,总数可能在2000左右,因此,为了确保研究的完整性和它们之间的无交集,必须以系统的方式在不同的论文中找到它们。本文对具有一个有限鞍节点和一个分离矩阵连接的相象族进行了分类,并确定存在最少77个拓扑上不同的相象和最多16个我们推测不可能存在的其他相象。在本文中,我们还部署了书中的一个错误(art等人在余维为1的结构不稳定的二次向量场中,Birkhäuser/Springer, Cham, 2018),该错误与Reyn和Huang(具有有限多重性3的二次系统的分离矩阵构型和$$M^0_{1,1}$$ m1 1,10型临界点)中的错误相关联。代尔夫特理工大学报告,1995年第95-115页)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing One Finite Saddle-Node and a Separatrix Connection

Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing One Finite Saddle-Node and a Separatrix Connection
Abstract This paper is part of a series of works whose ultimate goal is the complete classification of phase portraits of quadratic differential systems in the plane modulo limit cycles. It is estimated that the total number may be around 2000, so the work to find them all must be split in different papers in a systematic way so to assure the completeness of the study and also the non intersection among them. In this paper we classify the family of phase portraits possessing one finite saddle-node and a separatrix connection and determine that there are a minimum of 77 topologically different phase portraits plus at most 16 other phase portraits which we conjecture to be impossible. Along this paper we also deploy a mistake in the book (Artés et al. in Structurally unstable quadratic vector fields of codimension one, Birkhäuser/Springer, Cham, 2018) linked to a mistake in Reyn and Huang (Separatrix configuration of quadratic systems with finite multiplicity three and a $$M^0_{1,1}$$ M 1 , 1 0 type of critical point at infinity. Report Technische Universiteit Delft, pp 95–115, 1995).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信