基于本体的数据管理中的可分性及其近似

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Semantic Web Pub Date : 2023-06-08 DOI:10.3233/sw-233391
Gianluca Cima, Federico Croce, Maurizio Lenzerini
{"title":"基于本体的数据管理中的可分性及其近似","authors":"Gianluca Cima, Federico Croce, Maurizio Lenzerini","doi":"10.3233/sw-233391","DOIUrl":null,"url":null,"abstract":"Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"59 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separability and Its Approximations in Ontology-based Data Management\",\"authors\":\"Gianluca Cima, Federico Croce, Maurizio Lenzerini\",\"doi\":\"10.3233/sw-233391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233391\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233391","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

给定两个数据集,即两组常量,分别表示正例和反例,逻辑可分性是用某种目标查询语言找到一个公式来分离它们的推理任务。正如在之前的工作中已经指出的那样,这个任务在概念学习和生成引用表达式等几个应用场景中是相关的。此外,如果我们认为正反例的输入数据集是由黑箱模型中分别分类为正负的常量元组组成的,那么分离公式可以用来提供这种模型的全局事后解释。在本文中,我们研究了基于本体的数据管理(OBDM)背景下的可分离性任务,在OBDM中,领域本体提供了感兴趣领域的高级、基于逻辑的规范,通过适当的映射断言与信息系统的数据源层进行语义链接。由于适当分离(适当分离)两个输入数据集的公式并不总是存在,因此我们的第一个贡献是提出适当分离的(最佳)近似,称为(最小)完全分离和(最大)声音分离。我们通过在OBDM中提供可分离性的通用框架来实现这一点。然后,在使用迄今为止最流行的OBDM范式语言的场景中,我们的第二个贡献是对与框架相关的三个自然计算问题的全面研究,即验证(检查给定公式是否是两个给定数据集的适当,完整或合理的分离),存在(检查两个给定数据集的适当或最佳近似分离是否存在)和计算(计算任何适当的,或两个给定数据集的任何最佳近似分离)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separability and Its Approximations in Ontology-based Data Management
Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信