Nekrasov矩阵的对角-舒尔补

IF 0.7 4区 数学 Q2 Mathematics
Shiyun Wang, Qi Li, Xu Sun, Zhenhua Lyu
{"title":"Nekrasov矩阵的对角-舒尔补","authors":"Shiyun Wang, Qi Li, Xu Sun, Zhenhua Lyu","doi":"10.13001/ela.2023.7941","DOIUrl":null,"url":null,"abstract":"The Schur and diagonal-Schur complements are important tools in many fields. It was revealed that the diagonal-Schur complements of Nekrasov matrices with respect to the index set $\\{1\\}$ are Nekrasov matrices by Cvetkovic and Nedovic [Appl. Math. Comput., 208:225-230, 2009]. In this paper, we prove that the diagonal-Schur complements of Nekrasov matrices with respect to any index set are Nekrasov matrices. Similar results hold for $\\Sigma$-Nekrasov matrices. We also present some results on Nekrasov diagonally dominant degrees. Numerical examples are given to verify the correctness of the results.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":"8 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagonal-Schur complements of Nekrasov matrices\",\"authors\":\"Shiyun Wang, Qi Li, Xu Sun, Zhenhua Lyu\",\"doi\":\"10.13001/ela.2023.7941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schur and diagonal-Schur complements are important tools in many fields. It was revealed that the diagonal-Schur complements of Nekrasov matrices with respect to the index set $\\\\{1\\\\}$ are Nekrasov matrices by Cvetkovic and Nedovic [Appl. Math. Comput., 208:225-230, 2009]. In this paper, we prove that the diagonal-Schur complements of Nekrasov matrices with respect to any index set are Nekrasov matrices. Similar results hold for $\\\\Sigma$-Nekrasov matrices. We also present some results on Nekrasov diagonally dominant degrees. Numerical examples are given to verify the correctness of the results.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7941\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13001/ela.2023.7941","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

舒尔补和对角-舒尔补是许多领域的重要工具。Cvetkovic和Nedovic [Appl]揭示了Nekrasov矩阵关于指标集$\{1\}$的对角-舒尔补是Nekrasov矩阵。数学。第一版。[j].农业工程学报,2008(8):2104 - 2103。本文证明了Nekrasov矩阵对任何指标集的对角-舒尔补都是Nekrasov矩阵。类似的结果也适用于$\Sigma$-Nekrasov矩阵。我们也给出了关于Nekrasov对角占优度的一些结果。通过数值算例验证了所得结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagonal-Schur complements of Nekrasov matrices
The Schur and diagonal-Schur complements are important tools in many fields. It was revealed that the diagonal-Schur complements of Nekrasov matrices with respect to the index set $\{1\}$ are Nekrasov matrices by Cvetkovic and Nedovic [Appl. Math. Comput., 208:225-230, 2009]. In this paper, we prove that the diagonal-Schur complements of Nekrasov matrices with respect to any index set are Nekrasov matrices. Similar results hold for $\Sigma$-Nekrasov matrices. We also present some results on Nekrasov diagonally dominant degrees. Numerical examples are given to verify the correctness of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信