{"title":"Riesz势的最优弱估计","authors":"Liang Huang, Hanli Tang","doi":"10.5802/crmath.479","DOIUrl":null,"url":null,"abstract":"where γ s =2 -s π -n 2 Γ(n-s 2) Γ(s 2). We also consider the behavior of the best constant 𝒞 n,s of weak type estimate for Riesz potentials, and we prove 𝒞 n,s =O(γ s s) as s→0.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"32 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal weak estimates for Riesz potentials\",\"authors\":\"Liang Huang, Hanli Tang\",\"doi\":\"10.5802/crmath.479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where γ s =2 -s π -n 2 Γ(n-s 2) Γ(s 2). We also consider the behavior of the best constant 𝒞 n,s of weak type estimate for Riesz potentials, and we prove 𝒞 n,s =O(γ s s) as s→0.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.479\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.479","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
其中γ s =2 -s π -n 2 Γ(n-s 2) Γ(s 2)。我们还考虑了Riesz势的弱类型估计的最佳常数 n,s的行为,并证明了当s→0时, n,s =O(γ s s)。
where γ s =2 -s π -n 2 Γ(n-s 2) Γ(s 2). We also consider the behavior of the best constant 𝒞 n,s of weak type estimate for Riesz potentials, and we prove 𝒞 n,s =O(γ s s) as s→0.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.