{"title":"盘上贝塞尔-傅立叶级数的lp收敛性的注释","authors":"Ryan Luis Acosta Babb","doi":"10.5802/crmath.464","DOIUrl":null,"url":null,"abstract":"The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2≤p<4.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on the L p convergence of Bessel–Fourier series on the disc\",\"authors\":\"Ryan Luis Acosta Babb\",\"doi\":\"10.5802/crmath.464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2≤p<4.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
平面域上拉普拉斯特征函数展开式的lp收敛性对于p≠2是未知的。在讨论了2环面上的经典傅立叶级数之后,我们转向圆盘,其特征函数作为三角函数和贝塞尔函数的乘积显式可计算。我们总结了Balodis和Córdoba关于盘上混合范数空间lrad p (lang 2)中贝塞尔-傅里叶级数在范围为43
Remarks on the L p convergence of Bessel–Fourier series on the disc
The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3