盘上贝塞尔-傅立叶级数的lp收敛性的注释

IF 0.8 4区 数学 Q2 MATHEMATICS
Ryan Luis Acosta Babb
{"title":"盘上贝塞尔-傅立叶级数的lp收敛性的注释","authors":"Ryan Luis Acosta Babb","doi":"10.5802/crmath.464","DOIUrl":null,"url":null,"abstract":"The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2≤p<4.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"28 6","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on the L p convergence of Bessel–Fourier series on the disc\",\"authors\":\"Ryan Luis Acosta Babb\",\"doi\":\"10.5802/crmath.464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2≤p<4.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"28 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.464\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.464","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

平面域上拉普拉斯特征函数展开式的lp收敛性对于p≠2是未知的。在讨论了2环面上的经典傅立叶级数之后,我们转向圆盘,其特征函数作为三角函数和贝塞尔函数的乘积显式可计算。我们总结了Balodis和Córdoba关于盘上混合范数空间lrad p (lang 2)中贝塞尔-傅里叶级数在范围为43 ,rdrdt)范数收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on the L p convergence of Bessel–Fourier series on the disc
The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信