Jesús A. De Loera, Christopher O’Neill, Chengyang Wang
{"title":"(有色)仿射半群的凸性","authors":"Jesús A. De Loera, Christopher O’Neill, Chengyang Wang","doi":"10.1556/012.2023.01545","DOIUrl":null,"url":null,"abstract":"In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups , where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"39 9","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity in (Colored) Affine Semigroups\",\"authors\":\"Jesús A. De Loera, Christopher O’Neill, Chengyang Wang\",\"doi\":\"10.1556/012.2023.01545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups , where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"39 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2023.01545\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/012.2023.01545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups , where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.
期刊介绍:
The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.