在hq上。二阶卡诺群上的李不等式

Pub Date : 2023-10-24 DOI:10.5802/crmath.475
Ye Zhang
{"title":"在hq上。二阶卡诺群上的李不等式","authors":"Ye Zhang","doi":"10.5802/crmath.475","DOIUrl":null,"url":null,"abstract":"In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the H.-Q. Li inequality on step-two Carnot groups\",\"authors\":\"Ye Zhang\",\"doi\":\"10.5802/crmath.475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇笔记中,我们证明了热半群的梯度估计,或者更准确地说是h - q。李不等式,在张张化、一些合适的群上胚、中心和条件下保持。我们还建立了h - q对应的黎曼方程。李不平等。作为副产品,我们提供了一个更简单的证明,证明h - q中的常数。李不等式严格大于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the H.-Q. Li inequality on step-two Carnot groups
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信