{"title":"在hq上。二阶卡诺群上的李不等式","authors":"Ye Zhang","doi":"10.5802/crmath.475","DOIUrl":null,"url":null,"abstract":"In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"7 6","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the H.-Q. Li inequality on step-two Carnot groups\",\"authors\":\"Ye Zhang\",\"doi\":\"10.5802/crmath.475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"7 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.475\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.475","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the H.-Q. Li inequality on step-two Carnot groups
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than 1.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.