关于阶乘和s单位的皮莱问题的一个变体

IF 0.6 3区 数学 Q3 MATHEMATICS
Bernadette Faye, Florian Luca, Volker Ziegler
{"title":"关于阶乘和s单位的皮莱问题的一个变体","authors":"Bernadette Faye, Florian Luca, Volker Ziegler","doi":"10.1007/s11139-023-00787-1","DOIUrl":null,"url":null,"abstract":"Abstract Let S be a finite, fixed set of primes. In this paper, we show that the set of integers c which have at least two representations as a difference between a factorial and an S -unit is finite and effectively computable. In particular, we find all integers that can be written in at least two ways as a difference of a factorial and an S -unit associated with the set of primes $$\\{2,3,5,7\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>7</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"70 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a variant of Pillai’s problem with factorials and S-units\",\"authors\":\"Bernadette Faye, Florian Luca, Volker Ziegler\",\"doi\":\"10.1007/s11139-023-00787-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let S be a finite, fixed set of primes. In this paper, we show that the set of integers c which have at least two representations as a difference between a factorial and an S -unit is finite and effectively computable. In particular, we find all integers that can be written in at least two ways as a difference of a factorial and an S -unit associated with the set of primes $$\\\\{2,3,5,7\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>7</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> .\",\"PeriodicalId\":54511,\"journal\":{\"name\":\"Ramanujan Journal\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-023-00787-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-023-00787-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设S是一个有限的、固定的素数集合。在本文中,我们证明了在阶乘和S -单位之间至少有两种表示的整数集c是有限且有效可计算的。特别地,我们找到了所有的整数,这些整数可以用至少两种方式写成阶乘和S -单位的差与质数集$$\{2,3,5,7\}$$ 2, 3, 5, 7{相关。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a variant of Pillai’s problem with factorials and S-units
Abstract Let S be a finite, fixed set of primes. In this paper, we show that the set of integers c which have at least two representations as a difference between a factorial and an S -unit is finite and effectively computable. In particular, we find all integers that can be written in at least two ways as a difference of a factorial and an S -unit associated with the set of primes $$\{2,3,5,7\}$$ { 2 , 3 , 5 , 7 } .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信