3-正则过分区𝑟3-Crank的等式

IF 0.4 4区 数学 Q4 MATHEMATICS
Robert X. J. Hao, Erin Y. Y. Shen
{"title":"3-正则过分区𝑟3-Crank的等式","authors":"Robert X. J. Hao, Erin Y. Y. Shen","doi":"10.1556/012.2023.01542","DOIUrl":null,"url":null,"abstract":"Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"22 6","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equalities for the 𝑟3-Crank of 3-Regular Overpartitions\",\"authors\":\"Robert X. J. Hao, Erin Y. Y. Shen\",\"doi\":\"10.1556/012.2023.01542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"22 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2023.01542\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/012.2023.01542","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Lovejoy引入了分区函数,表示𝑛的𝑙-regular过度分区的数量。Andrews定义了用配分函数计数的(𝑘,)-奇异过划分,并指出。同时,Andrews导出了一个有趣的可除性(mod 3)。最近,我们构造了𝑙-regular overpartitions的划分统计量𝑟𝑙-曲柄,并对Andrews的一些同余和Andrews的一些同余给出了组合解释。在本文中,我们旨在证明3正则过分割的𝑟3-曲柄的一些等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equalities for the 𝑟3-Crank of 3-Regular Overpartitions
Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信