3-正则过分区𝑟3-Crank的等式

Pub Date : 2023-10-24 DOI:10.1556/012.2023.01542
Robert X. J. Hao, Erin Y. Y. Shen
{"title":"3-正则过分区𝑟3-Crank的等式","authors":"Robert X. J. Hao, Erin Y. Y. Shen","doi":"10.1556/012.2023.01542","DOIUrl":null,"url":null,"abstract":"Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equalities for the 𝑟3-Crank of 3-Regular Overpartitions\",\"authors\":\"Robert X. J. Hao, Erin Y. Y. Shen\",\"doi\":\"10.1556/012.2023.01542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2023.01542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/012.2023.01542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Lovejoy引入了分区函数,表示𝑛的𝑙-regular过度分区的数量。Andrews定义了用配分函数计数的(𝑘,)-奇异过划分,并指出。同时,Andrews导出了一个有趣的可除性(mod 3)。最近,我们构造了𝑙-regular overpartitions的划分统计量𝑟𝑙-曲柄,并对Andrews的一些同余和Andrews的一些同余给出了组合解释。在本文中,我们旨在证明3正则过分割的𝑟3-曲柄的一些等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equalities for the 𝑟3-Crank of 3-Regular Overpartitions
Lovejoy introduced the partition function as the number of 𝑙-regular overpartitions of 𝑛. Andrews defined (𝑘, 𝑖)-singular overpartitions counted by the partition function , and pointed out that . Meanwhile, Andrews derived an interesting divisibility property that (mod 3). Recently, we constructed the partition statistic 𝑟 𝑙 -crank of 𝑙-regular overpartitions and give combinatorial interpretations for some congruences of as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the 𝑟 3 -crank of 3-regular overpartitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信