Liman Yang, Xuze Guo, Jianfu Chen, Yixuan Wang, Huaixiang Ma, Yunhua Li, Zhiguo Yang, Yan Shi
{"title":"盾构机掘进过程地层识别的基于投票特征选择方法","authors":"Liman Yang, Xuze Guo, Jianfu Chen, Yixuan Wang, Huaixiang Ma, Yunhua Li, Zhiguo Yang, Yan Shi","doi":"10.1186/s10033-023-00932-3","DOIUrl":null,"url":null,"abstract":"Abstract Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identification based on staged drilling sampling, the real-time stratum identification method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classification models are used to train and test the obtained effective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classification with the best combination with VFS is obtained. The experimental results of shield machine data of 6 different geological structures show that the average accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identification in the process of tunnel construction, and can be matched with a variety of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, the identification of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vote-Based Feature Selection Method for Stratigraphic Recognition in Tunnelling Process of Shield Machine\",\"authors\":\"Liman Yang, Xuze Guo, Jianfu Chen, Yixuan Wang, Huaixiang Ma, Yunhua Li, Zhiguo Yang, Yan Shi\",\"doi\":\"10.1186/s10033-023-00932-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identification based on staged drilling sampling, the real-time stratum identification method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classification models are used to train and test the obtained effective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classification with the best combination with VFS is obtained. The experimental results of shield machine data of 6 different geological structures show that the average accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identification in the process of tunnel construction, and can be matched with a variety of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, the identification of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.\",\"PeriodicalId\":10115,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10033-023-00932-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00932-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Vote-Based Feature Selection Method for Stratigraphic Recognition in Tunnelling Process of Shield Machine
Abstract Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identification based on staged drilling sampling, the real-time stratum identification method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classification models are used to train and test the obtained effective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classification with the best combination with VFS is obtained. The experimental results of shield machine data of 6 different geological structures show that the average accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identification in the process of tunnel construction, and can be matched with a variety of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, the identification of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.