{"title":"椭圆曲面的modell - weil群和自同构群","authors":"Ichiro Shimada","doi":"10.4171/rmi/1449","DOIUrl":null,"url":null,"abstract":"We present a method to calculate the action of the Mordell–Weil group of an elliptic $K3$ surface on the numerical Néron–Severi lattice of the $K3$ surface. As an application, we compute a finite generating set of the automorphism group of a $K3$ surface birational to the double plane branched along a 6-cuspidal sextic curve of torus type.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mordell–Weil groups and automorphism groups of elliptic $K3$ surfaces\",\"authors\":\"Ichiro Shimada\",\"doi\":\"10.4171/rmi/1449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to calculate the action of the Mordell–Weil group of an elliptic $K3$ surface on the numerical Néron–Severi lattice of the $K3$ surface. As an application, we compute a finite generating set of the automorphism group of a $K3$ surface birational to the double plane branched along a 6-cuspidal sextic curve of torus type.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1449\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rmi/1449","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mordell–Weil groups and automorphism groups of elliptic $K3$ surfaces
We present a method to calculate the action of the Mordell–Weil group of an elliptic $K3$ surface on the numerical Néron–Severi lattice of the $K3$ surface. As an application, we compute a finite generating set of the automorphism group of a $K3$ surface birational to the double plane branched along a 6-cuspidal sextic curve of torus type.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.