可积双曲型三阶方程的对称结构

Alexander G Rasin, Jeremy Schiff
{"title":"可积双曲型三阶方程的对称结构","authors":"Alexander G Rasin, Jeremy Schiff","doi":"10.1088/1751-8121/ad069a","DOIUrl":null,"url":null,"abstract":"Abstract We explore the application of generating symmetries, i.e. symmetries that depend on a parameter, to integrable hyperbolic third order equations, and in particular to consistent pairs of such equations as introduced by Adler and Shabat in [1]. Our main result is that different infinite hierarchies of symmetries for these equations can arise from a single generating symmetry by expansion about different values of the parameter. We illustrate this, and study in depth the symmetry structure, for two examples. The first is an equation related to the potential KdV equation taken from [1]. The second is a more general hyperbolic equation than the kind considered in [1]. Both equations depend on a parameter, and when this parameter vanishes they become part of a consistent pair. When this happens, the nature of the expansions of the generating symmetries needed to derive the hierarchies also changes.
","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"16 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry structure of integrable hyperbolic third order equations\",\"authors\":\"Alexander G Rasin, Jeremy Schiff\",\"doi\":\"10.1088/1751-8121/ad069a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We explore the application of generating symmetries, i.e. symmetries that depend on a parameter, to integrable hyperbolic third order equations, and in particular to consistent pairs of such equations as introduced by Adler and Shabat in [1]. Our main result is that different infinite hierarchies of symmetries for these equations can arise from a single generating symmetry by expansion about different values of the parameter. We illustrate this, and study in depth the symmetry structure, for two examples. The first is an equation related to the potential KdV equation taken from [1]. The second is a more general hyperbolic equation than the kind considered in [1]. Both equations depend on a parameter, and when this parameter vanishes they become part of a consistent pair. When this happens, the nature of the expansions of the generating symmetries needed to derive the hierarchies also changes.
\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"16 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad069a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad069a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要探讨了生成对称(即依赖于参数的对称)在可积双曲型三阶方程中的应用,特别是在Adler和Shabat[1]中引入的双曲型三阶方程的一致对中的应用。我们的主要结论是,这些方程的不同的无限对称层次可以通过对不同参数值的展开从单个生成对称中产生。我们用两个例子来说明这一点,并深入研究对称结构。第一个是与势能KdV方程相关的方程,取自[1]。第二种是比[1]中考虑的那种更一般的双曲方程。两个方程都依赖于一个参数,当这个参数消失时,它们就成为一个一致的对的一部分。当这种情况发生时,派生层次结构所需的生成对称的展开的性质也会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry structure of integrable hyperbolic third order equations
Abstract We explore the application of generating symmetries, i.e. symmetries that depend on a parameter, to integrable hyperbolic third order equations, and in particular to consistent pairs of such equations as introduced by Adler and Shabat in [1]. Our main result is that different infinite hierarchies of symmetries for these equations can arise from a single generating symmetry by expansion about different values of the parameter. We illustrate this, and study in depth the symmetry structure, for two examples. The first is an equation related to the potential KdV equation taken from [1]. The second is a more general hyperbolic equation than the kind considered in [1]. Both equations depend on a parameter, and when this parameter vanishes they become part of a consistent pair. When this happens, the nature of the expansions of the generating symmetries needed to derive the hierarchies also changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信