求助PDF
{"title":"变指数临界非局部方程的小扰动","authors":"Lulu Tao, Rui He, Sihua Liang","doi":"10.1515/dema-2023-0266","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>\\</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\left\\{\\begin{array}{ll}{\\left(-\\Delta )}_{p\\left(x,y)}^{s}u=\\lambda f\\left(x,u)+{| u| }^{q\\left(x)-2}u& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right,\\end{array}\\right. where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> N\\ge 2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> p\\in C(\\Omega \\times \\Omega ) is symmetric, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> f:C\\left(\\Omega \\times {\\mathbb{R}})\\to {\\mathbb{R}} is a continuous function, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda is a real positive parameter. We also assume that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>:</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mi>∅</m:mi> </m:math> \\left\\{x\\in {{\\mathbb{R}}}^{N}:q\\left(x)={p}_{s}^{\\ast }\\left(x)\\right\\}\\ne \\varnothing , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {p}_{s}^{\\ast }\\left(x)=N\\tilde{p}\\left(x)/\\left(N-s\\tilde{p}\\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> s=1 and subcritical case.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small perturbations of critical nonlocal equations with variable exponents\",\"authors\":\"Lulu Tao, Rui He, Sihua Liang\",\"doi\":\"10.1515/dema-2023-0266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mfenced open=\\\"{\\\" close=\\\"\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\"> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mstyle> <m:mspace width=\\\"0.1em\\\" /> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.1em\\\" /> </m:mstyle> <m:mspace width=\\\"0.33em\\\" /> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mstyle> <m:mspace width=\\\"0.1em\\\" /> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.1em\\\" /> </m:mstyle> <m:mspace width=\\\"0.33em\\\" /> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>\\\\</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\\\left\\\\{\\\\begin{array}{ll}{\\\\left(-\\\\Delta )}_{p\\\\left(x,y)}^{s}u=\\\\lambda f\\\\left(x,u)+{| u| }^{q\\\\left(x)-2}u& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ u=0& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}\\\\backslash \\\\Omega \\\\right,\\\\end{array}\\\\right. where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> N\\\\ge 2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> p\\\\in C(\\\\Omega \\\\times \\\\Omega ) is symmetric, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:math> f:C\\\\left(\\\\Omega \\\\times {\\\\mathbb{R}})\\\\to {\\\\mathbb{R}} is a continuous function, and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>λ</m:mi> </m:math> \\\\lambda is a real positive parameter. We also assume that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>:</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mi>∅</m:mi> </m:math> \\\\left\\\\{x\\\\in {{\\\\mathbb{R}}}^{N}:q\\\\left(x)={p}_{s}^{\\\\ast }\\\\left(x)\\\\right\\\\}\\\\ne \\\\varnothing , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {p}_{s}^{\\\\ast }\\\\left(x)=N\\\\tilde{p}\\\\left(x)/\\\\left(N-s\\\\tilde{p}\\\\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>λ</m:mi> </m:math> \\\\lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> </m:math> f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> s=1 and subcritical case.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2023-0266\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dema-2023-0266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Small perturbations of critical nonlocal equations with variable exponents
Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: ( − Δ ) p ( x , y ) s u = λ f ( x , u ) + ∣ u ∣ q ( x ) − 2 u in Ω , u = 0 in R N \ Ω , \left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right,\end{array}\right. where Ω ⊂ R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, N ≥ 2 N\ge 2 , p ∈ C ( Ω × Ω ) p\in C(\Omega \times \Omega ) is symmetric, f : C ( Ω × R ) → R f:C\left(\Omega \times {\mathbb{R}})\to {\mathbb{R}} is a continuous function, and λ \lambda is a real positive parameter. We also assume that { x ∈ R N : q ( x ) = p s ∗ ( x ) } ≠ ∅ \left\{x\in {{\mathbb{R}}}^{N}:q\left(x)={p}_{s}^{\ast }\left(x)\right\}\ne \varnothing , and p s ∗ ( x ) = N p ˜ ( x ) ⁄ ( N − s p ˜ ( x ) ) {p}_{s}^{\ast }\left(x)=N\tilde{p}\left(x)/\left(N-s\tilde{p}\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( λ \lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function f f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of s = 1 s=1 and subcritical case.