变指数临界非局部方程的小扰动

IF 2 3区 数学 Q1 MATHEMATICS
Lulu Tao, Rui He, Sihua Liang
{"title":"变指数临界非局部方程的小扰动","authors":"Lulu Tao, Rui He, Sihua Liang","doi":"10.1515/dema-2023-0266","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mtd> <m:mtd columnalign=\"left\"> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>\\</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\left\\{\\begin{array}{ll}{\\left(-\\Delta )}_{p\\left(x,y)}^{s}u=\\lambda f\\left(x,u)+{| u| }^{q\\left(x)-2}u&amp; \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0&amp; \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right,\\end{array}\\right. where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> N\\ge 2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> p\\in C(\\Omega \\times \\Omega ) is symmetric, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> f:C\\left(\\Omega \\times {\\mathbb{R}})\\to {\\mathbb{R}} is a continuous function, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda is a real positive parameter. We also assume that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>:</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mi>∅</m:mi> </m:math> \\left\\{x\\in {{\\mathbb{R}}}^{N}:q\\left(x)={p}_{s}^{\\ast }\\left(x)\\right\\}\\ne \\varnothing , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mover accent=\"true\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {p}_{s}^{\\ast }\\left(x)=N\\tilde{p}\\left(x)/\\left(N-s\\tilde{p}\\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> \\lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> s=1 and subcritical case.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small perturbations of critical nonlocal equations with variable exponents\",\"authors\":\"Lulu Tao, Rui He, Sihua Liang\",\"doi\":\"10.1515/dema-2023-0266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mfenced open=\\\"{\\\" close=\\\"\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\"> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mstyle> <m:mspace width=\\\"0.1em\\\" /> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.1em\\\" /> </m:mstyle> <m:mspace width=\\\"0.33em\\\" /> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mstyle> <m:mspace width=\\\"0.1em\\\" /> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.1em\\\" /> </m:mstyle> <m:mspace width=\\\"0.33em\\\" /> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>\\\\</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> \\\\left\\\\{\\\\begin{array}{ll}{\\\\left(-\\\\Delta )}_{p\\\\left(x,y)}^{s}u=\\\\lambda f\\\\left(x,u)+{| u| }^{q\\\\left(x)-2}u&amp; \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ u=0&amp; \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}\\\\backslash \\\\Omega \\\\right,\\\\end{array}\\\\right. where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> N\\\\ge 2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> p\\\\in C(\\\\Omega \\\\times \\\\Omega ) is symmetric, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:math> f:C\\\\left(\\\\Omega \\\\times {\\\\mathbb{R}})\\\\to {\\\\mathbb{R}} is a continuous function, and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>λ</m:mi> </m:math> \\\\lambda is a real positive parameter. We also assume that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>:</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mi>∅</m:mi> </m:math> \\\\left\\\\{x\\\\in {{\\\\mathbb{R}}}^{N}:q\\\\left(x)={p}_{s}^{\\\\ast }\\\\left(x)\\\\right\\\\}\\\\ne \\\\varnothing , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⁄</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>˜</m:mo> </m:mrow> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {p}_{s}^{\\\\ast }\\\\left(x)=N\\\\tilde{p}\\\\left(x)/\\\\left(N-s\\\\tilde{p}\\\\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>λ</m:mi> </m:math> \\\\lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> </m:math> f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> s=1 and subcritical case.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2023-0266\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dema-2023-0266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注以下具有可变指数的临界非局部方程:(−Δ) p (x, y) s u = λ f (x, u) +∣u∣q (x)−2u在Ω中,u在R N Ω, \left {\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right,\end{array}\right中= 0。其中Ω∧R N \Omega\subset{{\mathbb{R}}} ^{N}是具有Lipschitz边界的有界域,N≥2 N \ge 2, p∈C(Ω × Ω) p \in C(\Omega\times\Omega)是对称的,f:C (Ω × R)→R f:C \left (\Omega\times{\mathbb{R}}) \to{\mathbb{R}}是一个连续函数,λ \lambda是一个实正参数。我们还假设{x∈rn:q (x)=p s∗(x)}≠∅\left {x \in{{\mathbb{R}}} ^{N}:q \left (x)={p_s}^ {}{\ast}\left (x) \right} \ne\varnothing,p s∗(x)=N p≈(x)⁄(N−s p≈(x)) {p_s}^ {}{\ast}\left (x)=N \tilde{p}\left (x)/ \left (N-s \tilde{p}\left (x))是可变指数的临界Sobolev指数。利用山口定理、变指数分数Sobolev空间的集中紧性原理和Moser迭代方法,证明了低扰动(λ \lambda足够小)下非平凡解的存在性。本文的特点是:(1)函数f不满足通常的Ambrosetti-Rabinowitz条件;(2)本文包含了临界项的存在,这可以看作是先前关于该问题在s=1 s=1和次临界情况下解存在性的结果的部分推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small perturbations of critical nonlocal equations with variable exponents
Abstract In this article, we are concerned with the following critical nonlocal equation with variable exponents: ( Δ ) p ( x , y ) s u = λ f ( x , u ) + u q ( x ) 2 u in Ω , u = 0 in R N \ Ω , \left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right,\end{array}\right. where Ω R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded domain with Lipschitz boundary, N 2 N\ge 2 , p C ( Ω × Ω ) p\in C(\Omega \times \Omega ) is symmetric, f : C ( Ω × R ) R f:C\left(\Omega \times {\mathbb{R}})\to {\mathbb{R}} is a continuous function, and λ \lambda is a real positive parameter. We also assume that { x R N : q ( x ) = p s ( x ) } \left\{x\in {{\mathbb{R}}}^{N}:q\left(x)={p}_{s}^{\ast }\left(x)\right\}\ne \varnothing , and p s ( x ) = N p ˜ ( x ) ( N s p ˜ ( x ) ) {p}_{s}^{\ast }\left(x)=N\tilde{p}\left(x)/\left(N-s\tilde{p}\left(x)) is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations ( λ \lambda small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function f f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of s = 1 s=1 and subcritical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信