一维热方程数值分析的有效有限差分法

Md. Shahadat Hossain Mojumder, Md. Nazmul Haque, Md. Joni Alam
{"title":"一维热方程数值分析的有效有限差分法","authors":"Md. Shahadat Hossain Mojumder, Md. Nazmul Haque, Md. Joni Alam","doi":"10.4236/jamp.2023.1110204","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate and analyze one-dimensional heat equation with appropriate initial and boundary condition using finite difference method. Finite difference method is a well-known numerical technique for obtaining the approximate solutions of an initial boundary value problem. We develop Forward Time Centered Space (FTCS) and Crank-Nicolson (CN) finite difference schemes for one-dimensional heat equation using the Taylor series. Later, we use these schemes to solve our governing equation. The stability criterion is discussed, and the stability conditions for both schemes are verified. We exhibit the results and then compare the results between the exact and approximate solutions. Finally, we estimate error between the exact and approximate solutions for a specific numerical problem to present the convergence of the numerical schemes, and demonstrate the resulting error in graphical representation.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Finite Difference Methods for the Numerical Analysis of One-Dimensional Heat Equation\",\"authors\":\"Md. Shahadat Hossain Mojumder, Md. Nazmul Haque, Md. Joni Alam\",\"doi\":\"10.4236/jamp.2023.1110204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate and analyze one-dimensional heat equation with appropriate initial and boundary condition using finite difference method. Finite difference method is a well-known numerical technique for obtaining the approximate solutions of an initial boundary value problem. We develop Forward Time Centered Space (FTCS) and Crank-Nicolson (CN) finite difference schemes for one-dimensional heat equation using the Taylor series. Later, we use these schemes to solve our governing equation. The stability criterion is discussed, and the stability conditions for both schemes are verified. We exhibit the results and then compare the results between the exact and approximate solutions. Finally, we estimate error between the exact and approximate solutions for a specific numerical problem to present the convergence of the numerical schemes, and demonstrate the resulting error in graphical representation.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.1110204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1110204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用有限差分法研究了具有适当初始条件和边界条件的一维热方程。有限差分法是一种众所周知的求初边值问题近似解的数值方法。利用泰勒级数建立了一维热方程的前向时心空间有限差分格式(FTCS)和Crank-Nicolson有限差分格式。稍后,我们使用这些方案来求解我们的控制方程。讨论了稳定性判据,并验证了两种方案的稳定性条件。我们展示结果,然后比较精确解和近似解之间的结果。最后,我们估计了一个特定数值问题的精确解和近似解之间的误差,以展示数值格式的收敛性,并以图形形式演示了由此产生的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Finite Difference Methods for the Numerical Analysis of One-Dimensional Heat Equation
In this paper, we investigate and analyze one-dimensional heat equation with appropriate initial and boundary condition using finite difference method. Finite difference method is a well-known numerical technique for obtaining the approximate solutions of an initial boundary value problem. We develop Forward Time Centered Space (FTCS) and Crank-Nicolson (CN) finite difference schemes for one-dimensional heat equation using the Taylor series. Later, we use these schemes to solve our governing equation. The stability criterion is discussed, and the stability conditions for both schemes are verified. We exhibit the results and then compare the results between the exact and approximate solutions. Finally, we estimate error between the exact and approximate solutions for a specific numerical problem to present the convergence of the numerical schemes, and demonstrate the resulting error in graphical representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信