{"title":"优点:针对联邦学习和区块链支持的6G边缘网络的按需物联网服务交付和资源调度方案,减少了时间和能源成本","authors":"Mahfuzulhoq Chowdhury","doi":"10.1504/ijahuc.2023.134603","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) can improve the privacy-preserving issue of users' IoT devices, in which users complete the local training and transfer the updated model data to the central server for a global update. Due to high latency, the central server-based FL may suffer from huge energy loss at local user devices. MEC-based FL can improve the model accuracy and energy consumption at user devices via edge server-based task execution. Along with FL, blockchain can improve data security via permission-based access. Existing works explored only single type of IoT task without any appropriate resource scheduling for multiple tasks with different preferences, FL, and blockchain operations. This paper provides a merit-based resource scheduling scheme for different tasks with preferences, blockchain, and FL operations by checking resources, deadlines, delays, and resource costs. The simulation results verify that 45% running time and 53% cost gain is achieved in proposed scheme over the baseline schemes.","PeriodicalId":50346,"journal":{"name":"International Journal of Ad Hoc and Ubiquitous Computing","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merit: an on-demand IoT service delivery and resource scheduling scheme for federated learning and blockchain empowered 6G edge networks with reduced time and energy cost\",\"authors\":\"Mahfuzulhoq Chowdhury\",\"doi\":\"10.1504/ijahuc.2023.134603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) can improve the privacy-preserving issue of users' IoT devices, in which users complete the local training and transfer the updated model data to the central server for a global update. Due to high latency, the central server-based FL may suffer from huge energy loss at local user devices. MEC-based FL can improve the model accuracy and energy consumption at user devices via edge server-based task execution. Along with FL, blockchain can improve data security via permission-based access. Existing works explored only single type of IoT task without any appropriate resource scheduling for multiple tasks with different preferences, FL, and blockchain operations. This paper provides a merit-based resource scheduling scheme for different tasks with preferences, blockchain, and FL operations by checking resources, deadlines, delays, and resource costs. The simulation results verify that 45% running time and 53% cost gain is achieved in proposed scheme over the baseline schemes.\",\"PeriodicalId\":50346,\"journal\":{\"name\":\"International Journal of Ad Hoc and Ubiquitous Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ad Hoc and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijahuc.2023.134603\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ad Hoc and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijahuc.2023.134603","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Merit: an on-demand IoT service delivery and resource scheduling scheme for federated learning and blockchain empowered 6G edge networks with reduced time and energy cost
Federated learning (FL) can improve the privacy-preserving issue of users' IoT devices, in which users complete the local training and transfer the updated model data to the central server for a global update. Due to high latency, the central server-based FL may suffer from huge energy loss at local user devices. MEC-based FL can improve the model accuracy and energy consumption at user devices via edge server-based task execution. Along with FL, blockchain can improve data security via permission-based access. Existing works explored only single type of IoT task without any appropriate resource scheduling for multiple tasks with different preferences, FL, and blockchain operations. This paper provides a merit-based resource scheduling scheme for different tasks with preferences, blockchain, and FL operations by checking resources, deadlines, delays, and resource costs. The simulation results verify that 45% running time and 53% cost gain is achieved in proposed scheme over the baseline schemes.
期刊介绍:
IJAHUC publishes papers that address networking or computing problems in the context of mobile and wireless ad hoc networks, wireless sensor networks, ad hoc computing systems, and ubiquitous computing systems.