糖尿病数据上的量子模拟场景和疾病分类行为

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ajeet Singh, N.D. Patel
{"title":"糖尿病数据上的量子模拟场景和疾病分类行为","authors":"Ajeet Singh, N.D. Patel","doi":"10.1504/ijahuc.2023.134604","DOIUrl":null,"url":null,"abstract":"In quantum mechanics, the state of a particle can be fully characterised for all future periods based on the beginning conditions and knowledge of the potential occupied by the particle. This paper presents an overview of the integration of statistical machine learning and quantum mechanics. Furthermore, we provide simulation scenarios, classification behaviour, and empirical observations on healthcare data through the utilisation of Feynman diagrams (Feynman et al., 2010) and QLattice (Abzu, 2022). The experimental simulation is carried out in the following instances: 1) changing the number of updating loops; 2) calling the qgraph.fit function multiple times before updating the QLattice; 3) fitting and selecting graphs according to different loss functions; 4) setting the graphs max depth to comparatively higher or smaller values. The paper concludes by summarising the observations made throughout the study and discussing the potential for future work in this field.","PeriodicalId":50346,"journal":{"name":"International Journal of Ad Hoc and Ubiquitous Computing","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum simulation scenarios and disease classification behaviour on diabetes data\",\"authors\":\"Ajeet Singh, N.D. Patel\",\"doi\":\"10.1504/ijahuc.2023.134604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In quantum mechanics, the state of a particle can be fully characterised for all future periods based on the beginning conditions and knowledge of the potential occupied by the particle. This paper presents an overview of the integration of statistical machine learning and quantum mechanics. Furthermore, we provide simulation scenarios, classification behaviour, and empirical observations on healthcare data through the utilisation of Feynman diagrams (Feynman et al., 2010) and QLattice (Abzu, 2022). The experimental simulation is carried out in the following instances: 1) changing the number of updating loops; 2) calling the qgraph.fit function multiple times before updating the QLattice; 3) fitting and selecting graphs according to different loss functions; 4) setting the graphs max depth to comparatively higher or smaller values. The paper concludes by summarising the observations made throughout the study and discussing the potential for future work in this field.\",\"PeriodicalId\":50346,\"journal\":{\"name\":\"International Journal of Ad Hoc and Ubiquitous Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ad Hoc and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijahuc.2023.134604\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ad Hoc and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijahuc.2023.134604","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在量子力学中,一个粒子的状态可以根据初始条件和对该粒子所占据的势的了解,在所有未来时期内得到充分的表征。本文概述了统计机器学习与量子力学的融合。此外,我们通过使用Feynman图(Feynman et al., 2010)和QLattice (Abzu, 2022)提供模拟场景、分类行为和医疗保健数据的经验观察。在以下情况下进行了实验仿真:1)改变更新循环数;2)调用qgraph。在更新QLattice之前多次使用fit函数;3)根据不同的损失函数拟合和选择图;4)将图形的最大深度设置为相对较高或较小的值。论文最后总结了整个研究过程中的观察结果,并讨论了该领域未来工作的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum simulation scenarios and disease classification behaviour on diabetes data
In quantum mechanics, the state of a particle can be fully characterised for all future periods based on the beginning conditions and knowledge of the potential occupied by the particle. This paper presents an overview of the integration of statistical machine learning and quantum mechanics. Furthermore, we provide simulation scenarios, classification behaviour, and empirical observations on healthcare data through the utilisation of Feynman diagrams (Feynman et al., 2010) and QLattice (Abzu, 2022). The experimental simulation is carried out in the following instances: 1) changing the number of updating loops; 2) calling the qgraph.fit function multiple times before updating the QLattice; 3) fitting and selecting graphs according to different loss functions; 4) setting the graphs max depth to comparatively higher or smaller values. The paper concludes by summarising the observations made throughout the study and discussing the potential for future work in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
69
审稿时长
7 months
期刊介绍: IJAHUC publishes papers that address networking or computing problems in the context of mobile and wireless ad hoc networks, wireless sensor networks, ad hoc computing systems, and ubiquitous computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信