基于MRI稀疏编码的膝关节骨关节炎无损诊断

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
Huifeng Ren, Dong Zhang
{"title":"基于MRI稀疏编码的膝关节骨关节炎无损诊断","authors":"Huifeng Ren, Dong Zhang","doi":"10.1504/ijcsm.2023.134557","DOIUrl":null,"url":null,"abstract":"The disability rate of knee osteoarthritis (KOA) is high. A kind of non-destructive diagnosis of KOA based on sparse coding of magnetic resonance imaging (MRI) is presented. The two-dimensional Gabor filter bank is used to extract the high-dimensional features of KOA-MRI images. Secondly, a fitness feedback particle swarm optimisation is proposed to choose three key parameters of the Gabor filter: bandwidth parameters, maximum frequency of the centre and window size. Then the extracted Gabor visual features are described by the sparse coding and sparse coefficient matrix of magnetic resonance images. An improved feature imbalance support vector machine (SVM) is used to classify magnetic resonance images by considering the unbalanced influence of feature contributions. The overall performance of diagnosis has improved.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"126 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-destructive diagnosis of knee osteoarthritis based on sparse coding of MRI\",\"authors\":\"Huifeng Ren, Dong Zhang\",\"doi\":\"10.1504/ijcsm.2023.134557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The disability rate of knee osteoarthritis (KOA) is high. A kind of non-destructive diagnosis of KOA based on sparse coding of magnetic resonance imaging (MRI) is presented. The two-dimensional Gabor filter bank is used to extract the high-dimensional features of KOA-MRI images. Secondly, a fitness feedback particle swarm optimisation is proposed to choose three key parameters of the Gabor filter: bandwidth parameters, maximum frequency of the centre and window size. Then the extracted Gabor visual features are described by the sparse coding and sparse coefficient matrix of magnetic resonance images. An improved feature imbalance support vector machine (SVM) is used to classify magnetic resonance images by considering the unbalanced influence of feature contributions. The overall performance of diagnosis has improved.\",\"PeriodicalId\":45487,\"journal\":{\"name\":\"International Journal of Computing Science and Mathematics\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2023.134557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.134557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

膝关节骨关节炎(KOA)致残率高。提出了一种基于磁共振成像稀疏编码的KOA无损诊断方法。利用二维Gabor滤波器组提取KOA-MRI图像的高维特征。其次,提出了适应度反馈粒子群优化方法,选择Gabor滤波器的三个关键参数:带宽参数、中心最大频率和窗口大小;然后利用磁共振图像的稀疏编码和稀疏系数矩阵对提取的Gabor视觉特征进行描述。利用改进的特征不平衡支持向量机(SVM),考虑特征贡献的不平衡影响,对磁共振图像进行分类。整体诊断效能有所提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive diagnosis of knee osteoarthritis based on sparse coding of MRI
The disability rate of knee osteoarthritis (KOA) is high. A kind of non-destructive diagnosis of KOA based on sparse coding of magnetic resonance imaging (MRI) is presented. The two-dimensional Gabor filter bank is used to extract the high-dimensional features of KOA-MRI images. Secondly, a fitness feedback particle swarm optimisation is proposed to choose three key parameters of the Gabor filter: bandwidth parameters, maximum frequency of the centre and window size. Then the extracted Gabor visual features are described by the sparse coding and sparse coefficient matrix of magnetic resonance images. An improved feature imbalance support vector machine (SVM) is used to classify magnetic resonance images by considering the unbalanced influence of feature contributions. The overall performance of diagnosis has improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信