$\delta^{\sharp}(2,2)$- 4维理想仿心超曲面

IF 0.6 4区 数学 Q3 MATHEMATICS
Handan Yıldırım, Luc Vrancken
{"title":"$\\delta^{\\sharp}(2,2)$- 4维理想仿心超曲面","authors":"Handan Yıldırım, Luc Vrancken","doi":"10.11650/tjm/230706","DOIUrl":null,"url":null,"abstract":"Ideal submanifolds have been studied from various aspects since Chen invented $\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\delta^{\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"65 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\delta^{\\\\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4\",\"authors\":\"Handan Yıldırım, Luc Vrancken\",\"doi\":\"10.11650/tjm/230706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ideal submanifolds have been studied from various aspects since Chen invented $\\\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\\\delta^{\\\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230706\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

自从Chen在20世纪90年代初发明$\delta$-不变量以来,理想子流形已经从各个方面进行了研究(参见[12])。在仿心微分几何中,用$\delta^{\sharp}$表示的Chen不变量用于确定超曲面的切比切夫向量场的平方范数的最优界。我们指出,达到这个界的超曲面称为理想仿心超曲面。在本文中,我们处理$\mathbb{R}^{5}$中的$\delta^{\sharp}(2,2)$-理想中仿射超曲面,特别地,我们关注$1$的$ $4维$\delta^{\sharp}(2,2)$-理想中仿射超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\delta^{\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4
Ideal submanifolds have been studied from various aspects since Chen invented $\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\delta^{\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信