$\delta^{\sharp}(2,2)$- 4维理想仿心超曲面

Pub Date : 2023-01-01 DOI:10.11650/tjm/230706
Handan Yıldırım, Luc Vrancken
{"title":"$\\delta^{\\sharp}(2,2)$- 4维理想仿心超曲面","authors":"Handan Yıldırım, Luc Vrancken","doi":"10.11650/tjm/230706","DOIUrl":null,"url":null,"abstract":"Ideal submanifolds have been studied from various aspects since Chen invented $\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\delta^{\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\delta^{\\\\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4\",\"authors\":\"Handan Yıldırım, Luc Vrancken\",\"doi\":\"10.11650/tjm/230706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ideal submanifolds have been studied from various aspects since Chen invented $\\\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\\\delta^{\\\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自从Chen在20世纪90年代初发明$\delta$-不变量以来,理想子流形已经从各个方面进行了研究(参见[12])。在仿心微分几何中,用$\delta^{\sharp}$表示的Chen不变量用于确定超曲面的切比切夫向量场的平方范数的最优界。我们指出,达到这个界的超曲面称为理想仿心超曲面。在本文中,我们处理$\mathbb{R}^{5}$中的$\delta^{\sharp}(2,2)$-理想中仿射超曲面,特别地,我们关注$1$的$ $4维$\delta^{\sharp}(2,2)$-理想中仿射超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$\delta^{\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4
Ideal submanifolds have been studied from various aspects since Chen invented $\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\delta^{\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信