{"title":"$\\delta^{\\sharp}(2,2)$- 4维理想仿心超曲面","authors":"Handan Yıldırım, Luc Vrancken","doi":"10.11650/tjm/230706","DOIUrl":null,"url":null,"abstract":"Ideal submanifolds have been studied from various aspects since Chen invented $\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\delta^{\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\delta^{\\\\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4\",\"authors\":\"Handan Yıldırım, Luc Vrancken\",\"doi\":\"10.11650/tjm/230706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ideal submanifolds have been studied from various aspects since Chen invented $\\\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\\\delta^{\\\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\\\delta^{\\\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
$\delta^{\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4
Ideal submanifolds have been studied from various aspects since Chen invented $\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\delta^{\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.