{"title":"二元二次序列的最小公倍数","authors":"Noam Kimmel","doi":"10.4064/aa220719-9-7","DOIUrl":null,"url":null,"abstract":"Let $F\\in \\mathbb Z[x,y]$ be some polynomial of degree 2. We find the asymptotic behaviour of the least common multiple of the values of $F$ up to $N$. More precisely, we consider $\\psi_F(N) = \\log(\\text{LCM}_{0 \\lt F(x,y)\\leq N}\\lbrace F(x,y) \\rbrace)$ a","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":"28 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The least common multiple of a bivariate quadratic sequence\",\"authors\":\"Noam Kimmel\",\"doi\":\"10.4064/aa220719-9-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F\\\\in \\\\mathbb Z[x,y]$ be some polynomial of degree 2. We find the asymptotic behaviour of the least common multiple of the values of $F$ up to $N$. More precisely, we consider $\\\\psi_F(N) = \\\\log(\\\\text{LCM}_{0 \\\\lt F(x,y)\\\\leq N}\\\\lbrace F(x,y) \\\\rbrace)$ a\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220719-9-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/aa220719-9-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The least common multiple of a bivariate quadratic sequence
Let $F\in \mathbb Z[x,y]$ be some polynomial of degree 2. We find the asymptotic behaviour of the least common multiple of the values of $F$ up to $N$. More precisely, we consider $\psi_F(N) = \log(\text{LCM}_{0 \lt F(x,y)\leq N}\lbrace F(x,y) \rbrace)$ a