{"title":"在海量医疗数据记录中进行多层次随机优化归算","authors":"Wenrui Li;Xiaoyu Wang;Yuetian Sun;Snezana Milanovic;Mark Kon;Julio Enrique Castrillón-Candás","doi":"10.1109/TBDATA.2023.3328433","DOIUrl":null,"url":null,"abstract":"It has long been a recognized problem that many datasets contain significant levels of missing numerical data. A potentially critical predicate for application of machine learning methods to datasets involves addressing this problem. However, this is a challenging task. In this article, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the Best Linear Unbiased Predictor (BLUP) this multi-level formulation is \n<italic>exact</i>\n, and is significantly faster and more numerically stable. This permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. Numerical results show that the multi-level method significantly outperforms current approaches and is numerically robust. It has superior accuracy as compared with methods recommended in the recent report from HCUP. Benchmark tests show up to 75% reductions in error. Furthermore, the results are also superior to recent state of the art methods such as discriminative deep learning.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 2","pages":"122-131"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Stochastic Optimization for Imputation in Massive Medical Data Records\",\"authors\":\"Wenrui Li;Xiaoyu Wang;Yuetian Sun;Snezana Milanovic;Mark Kon;Julio Enrique Castrillón-Candás\",\"doi\":\"10.1109/TBDATA.2023.3328433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has long been a recognized problem that many datasets contain significant levels of missing numerical data. A potentially critical predicate for application of machine learning methods to datasets involves addressing this problem. However, this is a challenging task. In this article, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the Best Linear Unbiased Predictor (BLUP) this multi-level formulation is \\n<italic>exact</i>\\n, and is significantly faster and more numerically stable. This permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. Numerical results show that the multi-level method significantly outperforms current approaches and is numerically robust. It has superior accuracy as compared with methods recommended in the recent report from HCUP. Benchmark tests show up to 75% reductions in error. Furthermore, the results are also superior to recent state of the art methods such as discriminative deep learning.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 2\",\"pages\":\"122-131\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301500/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301500/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multilevel Stochastic Optimization for Imputation in Massive Medical Data Records
It has long been a recognized problem that many datasets contain significant levels of missing numerical data. A potentially critical predicate for application of machine learning methods to datasets involves addressing this problem. However, this is a challenging task. In this article, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the Best Linear Unbiased Predictor (BLUP) this multi-level formulation is
exact
, and is significantly faster and more numerically stable. This permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. Numerical results show that the multi-level method significantly outperforms current approaches and is numerically robust. It has superior accuracy as compared with methods recommended in the recent report from HCUP. Benchmark tests show up to 75% reductions in error. Furthermore, the results are also superior to recent state of the art methods such as discriminative deep learning.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.