Théophile Ouédraogo, Sâga Sawadogo, Hermann Ilboudo, Séta Naba
{"title":"布基纳法索西南部(西非)Napélépéra含金花岗闪长岩蚀变类型及地球化学特征","authors":"Théophile Ouédraogo, Sâga Sawadogo, Hermann Ilboudo, Séta Naba","doi":"10.4236/ojg.2023.1310049","DOIUrl":null,"url":null,"abstract":"The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisation, the mobility of chemical elements and alteration-mineralization relationships were studied by means of selected core drilling and geochemical analyses using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively coupled plasma atomic emission spectroscopy). The mineralised granodiorite is grey porphyroid with quartz, plagioclase, biotite and amphibole. It is metaluminous and located in the tholeiitic series. The Na2O + CaO versus Fe2O3 + MgO alteration diagram divides the samples according to alteration dominance. Chloritisation and carbonation are the main alterations. There is a relationship between gold mineralisation at Napélépéra and alteration, and the paragenesis of gold + pyrite ± carbonate ± silica ± sericite is the main characteristic. Carbonation is the result of fluid input in the shear corridor of the mineralised zone. The mass balance of comparative metals in the proximal and distal zones of the mineralisation shows the absence of metals, while As, Hg, Ag and Bi are strongly enriched from the distal zone to the mineralised zone. The oxides associated with the mineralisation are mainly NaO, SrO and CaO.","PeriodicalId":142678,"journal":{"name":"Open Journal of Geology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alteration Typology and Geochemical Signatures of the Napélépéra Gold-Bearing Granodiorite in South-West Burkina Faso (West Africa)\",\"authors\":\"Théophile Ouédraogo, Sâga Sawadogo, Hermann Ilboudo, Séta Naba\",\"doi\":\"10.4236/ojg.2023.1310049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisation, the mobility of chemical elements and alteration-mineralization relationships were studied by means of selected core drilling and geochemical analyses using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively coupled plasma atomic emission spectroscopy). The mineralised granodiorite is grey porphyroid with quartz, plagioclase, biotite and amphibole. It is metaluminous and located in the tholeiitic series. The Na2O + CaO versus Fe2O3 + MgO alteration diagram divides the samples according to alteration dominance. Chloritisation and carbonation are the main alterations. There is a relationship between gold mineralisation at Napélépéra and alteration, and the paragenesis of gold + pyrite ± carbonate ± silica ± sericite is the main characteristic. Carbonation is the result of fluid input in the shear corridor of the mineralised zone. The mass balance of comparative metals in the proximal and distal zones of the mineralisation shows the absence of metals, while As, Hg, Ag and Bi are strongly enriched from the distal zone to the mineralised zone. The oxides associated with the mineralisation are mainly NaO, SrO and CaO.\",\"PeriodicalId\":142678,\"journal\":{\"name\":\"Open Journal of Geology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ojg.2023.1310049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojg.2023.1310049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alteration Typology and Geochemical Signatures of the Napélépéra Gold-Bearing Granodiorite in South-West Burkina Faso (West Africa)
The characterization of the relationships between mineralization and hydrothermal alteration is an essential element in understanding gold deposits. In south-west Burkina Faso, the Napélépéra mineralisation, the mobility of chemical elements and alteration-mineralization relationships were studied by means of selected core drilling and geochemical analyses using ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively coupled plasma atomic emission spectroscopy). The mineralised granodiorite is grey porphyroid with quartz, plagioclase, biotite and amphibole. It is metaluminous and located in the tholeiitic series. The Na2O + CaO versus Fe2O3 + MgO alteration diagram divides the samples according to alteration dominance. Chloritisation and carbonation are the main alterations. There is a relationship between gold mineralisation at Napélépéra and alteration, and the paragenesis of gold + pyrite ± carbonate ± silica ± sericite is the main characteristic. Carbonation is the result of fluid input in the shear corridor of the mineralised zone. The mass balance of comparative metals in the proximal and distal zones of the mineralisation shows the absence of metals, while As, Hg, Ag and Bi are strongly enriched from the distal zone to the mineralised zone. The oxides associated with the mineralisation are mainly NaO, SrO and CaO.