企业财务智能审计技术

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Peng, Guixian Tian
{"title":"企业财务智能审计技术","authors":"Chen Peng, Guixian Tian","doi":"10.1515/jisys-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract With the need of social and economic development, the audit method is also continuously reformed and improved. Traditional audit methods have defects of comprehensively considering various risk factors, and cannot meet the needs of enterprise financial work. To improve the effectiveness of audit work and meet the financial needs of enterprises, a solution for intelligent auditing of enterprise finance is proposed, including intelligent analysis of accounting vouchers and of audit reports. Then, Bi-directional Long Short-Term Memory (BiLSTM) neural network is used to classify the audit problems under three text feature extraction methods. The test results show that the accuracy, recall rate, and F 1 value of the COWORDS-IOM algorithm in the aggregate clustering of accounting vouchers are 85.12, 83.28, and 84.85%, respectively, which are better than the self-organizing map algorithm before the improvement. The accuracy rate, recall rate, and F 1 value of Word2vec TF-IDF LDA-BiLSTM model for intelligent analysis of audit reports are 87.43, 87.88, and 87.66%, respectively. This shows that the proposed method has good performance in accounting voucher clustering and intelligent analysis of audit reports, which can provide guidance for the development of enterprise financial intelligence software to a certain extent.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"18 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent auditing techniques for enterprise finance\",\"authors\":\"Chen Peng, Guixian Tian\",\"doi\":\"10.1515/jisys-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the need of social and economic development, the audit method is also continuously reformed and improved. Traditional audit methods have defects of comprehensively considering various risk factors, and cannot meet the needs of enterprise financial work. To improve the effectiveness of audit work and meet the financial needs of enterprises, a solution for intelligent auditing of enterprise finance is proposed, including intelligent analysis of accounting vouchers and of audit reports. Then, Bi-directional Long Short-Term Memory (BiLSTM) neural network is used to classify the audit problems under three text feature extraction methods. The test results show that the accuracy, recall rate, and F 1 value of the COWORDS-IOM algorithm in the aggregate clustering of accounting vouchers are 85.12, 83.28, and 84.85%, respectively, which are better than the self-organizing map algorithm before the improvement. The accuracy rate, recall rate, and F 1 value of Word2vec TF-IDF LDA-BiLSTM model for intelligent analysis of audit reports are 87.43, 87.88, and 87.66%, respectively. This shows that the proposed method has good performance in accounting voucher clustering and intelligent analysis of audit reports, which can provide guidance for the development of enterprise financial intelligence software to a certain extent.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2023-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着社会经济发展的需要,审计方法也在不断改革和完善。传统的审计方法存在综合考虑各种风险因素的缺陷,不能满足企业财务工作的需要。为提高审计工作的有效性,满足企业财务需求,提出了一种企业财务智能审计解决方案,包括会计凭证智能分析和审计报告智能分析。然后利用双向长短期记忆(BiLSTM)神经网络对三种文本特征提取方法下的审计问题进行分类。测试结果表明,COWORDS-IOM算法在会计凭证聚类中的准确率为85.12,召回率为83.28,f1值为84.85%,均优于改进前的自组织映射算法。Word2vec TF-IDF LDA-BiLSTM模型用于审计报告智能分析的准确率为87.43,召回率为87.88,f1值为87.66%。这表明所提出的方法在会计凭证聚类和审计报告智能分析方面具有良好的性能,可以在一定程度上为企业财务智能软件的开发提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent auditing techniques for enterprise finance
Abstract With the need of social and economic development, the audit method is also continuously reformed and improved. Traditional audit methods have defects of comprehensively considering various risk factors, and cannot meet the needs of enterprise financial work. To improve the effectiveness of audit work and meet the financial needs of enterprises, a solution for intelligent auditing of enterprise finance is proposed, including intelligent analysis of accounting vouchers and of audit reports. Then, Bi-directional Long Short-Term Memory (BiLSTM) neural network is used to classify the audit problems under three text feature extraction methods. The test results show that the accuracy, recall rate, and F 1 value of the COWORDS-IOM algorithm in the aggregate clustering of accounting vouchers are 85.12, 83.28, and 84.85%, respectively, which are better than the self-organizing map algorithm before the improvement. The accuracy rate, recall rate, and F 1 value of Word2vec TF-IDF LDA-BiLSTM model for intelligent analysis of audit reports are 87.43, 87.88, and 87.66%, respectively. This shows that the proposed method has good performance in accounting voucher clustering and intelligent analysis of audit reports, which can provide guidance for the development of enterprise financial intelligence software to a certain extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信